期刊论文详细信息
Epigenetics & Chromatin
The histone deacetylase inhibitor sodium valproate causes limited transcriptional change in mouse embryonic stem cells but selectively overrides Polycomb-mediated Hoxb silencing
Bryan M Turner2  Karl P Nightingale2  Laura P O’Neill2  Anton Wutz1  Martin Leeb1  Charlotte E Rutledge2  John A Halsall2  Hannah Stower2  Elsa Boudadi2 
[1] Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK;Chromatin and Gene Expression Group, College of Medical and Dental Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK
关键词: Transcriptional activation;    Retinoic acid;    Microarray expression analysis;    Histone modification;    Mouse embryonic stem cells;    Polycomb repression;    Histone deacetylase;    Valproic acid;    Hoxb genes;   
Others  :  811210
DOI  :  10.1186/1756-8935-6-11
 received in 2013-01-25, accepted in 2013-04-16,  发布年份 2013
PDF
【 摘 要 】

Background

Histone deacetylase inhibitors (HDACi) cause histone hyperacetylation and H3K4 hypermethylation in various cell types. They find clinical application as anti-epileptics and chemotherapeutic agents, but the pathways through which they operate remain unclear. Surprisingly, changes in gene expression caused by HDACi are often limited in extent and can be positive or negative. Here we have explored the ability of the clinically important HDACi valproic acid (VPA) to alter histone modification and gene expression, both globally and at specific genes, in mouse embryonic stem (ES) cells.

Results

Microarray expression analysis of ES cells exposed to VPA (1 mM, 8 h), showed that only 2.4% of genes showed a significant, >1.5-fold transcriptional change. Of these, 33% were down-regulated. There was no correlation between gene expression and VPA-induced changes in histone acetylation or H3K4 methylation at gene promoters, which were usually minimal. In contrast, all Hoxb genes showed increased levels of H3K9ac after exposure to VPA, but much less change in other modifications showing bulk increases. VPA-induced changes were lost within 24 h of inhibitor removal. VPA significantly increased the low transcription of Hoxb4 and Hoxb7, but not other Hoxb genes. Expression of Hoxb genes increased in ES cells lacking functional Polycomb silencing complexes PRC1 and PRC2. Surprisingly, VPA caused no further increase in Hoxb transcription in these cells, except for Hoxb1, whose expression increased several fold. Retinoic acid (RA) increased transcription of all Hoxb genes in differentiating ES cells within 24 h, but thereafter transcription remained the same, increased progressively or fell progressively in a locus-specific manner.

Conclusions

Hoxb genes in ES cells are unusual in being sensitive to VPA, with effects on both cluster-wide and locus-specific processes. VPA increases H3K9ac at all Hoxb loci but significantly overrides PRC-mediated silencing only at Hoxb4 and Hoxb7. Hoxb1 is the only Hoxb gene that is further up-regulated by VPA in PRC-deficient cells. Our results demonstrate that VPA can exert both cluster-wide and locus-specific effects on Hoxb regulation.

【 授权许可】

   
2013 Boudadi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140709061336255.pdf 1566KB PDF download
Figure 9. 78KB Image download
Figure 8. 56KB Image download
Figure 7. 98KB Image download
Figure 6. 101KB Image download
Figure 5. 94KB Image download
Figure 4. 83KB Image download
Figure 3. 89KB Image download
Figure 2. 152KB Image download
Figure 1. 135KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Nightingale KP, Gendreizig S, White DA, Bradbury C, Hollfelder F, Turner BM: Cross-talk between histone modifications in response to histone deacetylase inhibitors: MLL4 links histone H3 acetylation and histone H3K4 methylation. J Biol Chem 2007, 282:4408-4416.
  • [2]Marks PA, Xu WS: Histone deacetylase inhibitors: potential in cancer therapy. J Cell Biochem 2009, 107:600-608.
  • [3]StatBite: FDA oncology drug product approvals in 2009. J Natl Cancer Inst 2009, 102(4):219.
  • [4]Batty N, Malouf GG, Issa JP: Histone deacetylase inhibitors as anti-neoplastic agents. Cancer Lett 2009, 280:192-200.
  • [5]Mercurio C, Minucci S, Pelicci PG: Histone deacetylases and epigenetic therapies of hematological malignancies. Pharmacol Res 2010, 62:18-34.
  • [6]Xu WS, Parmigiani RB, Marks PA: Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 2007, 26:5541-5552.
  • [7]Haberland M, Montgomery RL, Olson EN: The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 2009, 10:32-42.
  • [8]Haigis MC, Guarente LP: Mammalian sirtuins–emerging roles in physiology, aging, and calorie restriction. Genes Dev 2006, 20:2913-2921.
  • [9]Marmorstein R, Trievel RC: Histone modifying enzymes: structures, mechanisms, and specificities. Biochim Biophys Acta 2009, 1789:58-68.
  • [10]Qiu Y, Zhao Y, Becker M, John S, Parekh BS, Huang S, Hendarwanto A, Martinez ED, Chen Y, Lu H, Adkins NL, Stavreva DA, Wiench M, Georgel PT, Schiltz RL, Hager GL: HDAC1 acetylation is linked to progressive modulation of steroid receptor-induced gene transcription. Mol Cell 2006, 22:669-679.
  • [11]Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS: Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 2001, 276:36734-36741.
  • [12]Gerstner T, Bell N, Konig S: Oral valproic acid for epilepsy–long-term experience in therapy and side effects. Expert Opin Pharmacother 2008, 9:285-292.
  • [13]Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C, Perez-Cardenas E, de la Cruz-Hernandez E, Herrera LA: Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat Rev 2008, 34:206-222.
  • [14]Alsdorf R, Wyszynski DF: Teratogenicity of sodium valproate. Expert Opin Drug Saf 2005, 4:345-353.
  • [15]Kluger BM, Meador KJ: Teratogenicity of antiepileptic medications. Semin Neurol 2008, 28:328-335.
  • [16]Ardinger HH, Atkin JF, Blackston RD, Elsas LJ, Clarren SK, Livingstone S, Flannery DB, Pellock JM, Harrod MJ, Lammer EJ: Verification of the fetal valproate syndrome phenotype. Am J Med Genet 1988, 29:171-185.
  • [17]Massa V, Cabrera RM, Menegola E, Giavini E, Finnell RH: Valproic acid-induced skeletal malformations: associated gene expression cascades. Pharmacogenet Genomics 2005, 15:787-800.
  • [18]Chuang CM, Chang CH, Wang HE, Chen KC, Peng CC, Hsieh CL, Peng RY: Valproic Acid Downregulates RBP4 and Elicits Hypervitaminosis A-Teratogenesis-A Kinetic Analysis on Retinol/Retinoic Acid Homeostatic System. PLoS One 2012, 7:e43692.
  • [19]Tung EW, Winn LM: Valproic acid increases formation of reactive oxygen species and induces apoptosis in postimplantation embryos: a role for oxidative stress in valproic acid-induced neural tube defects. Mol Pharmacol 2011, 80:979-987.
  • [20]Rada-Iglesias A, Enroth S, Ameur A, Koch CM, Clelland GK, Respuela-Alonso P, Wilcox S, Dovey OM, Ellis PD, Langford CF, Dunham I, Komorowski J, Wadelius C: Butyrate mediates decrease of histone acetylation centered on transcription start sites and down-regulation of associated genes. Genome Res 2007, 17:708-719.
  • [21]Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K: Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 2009, 138:1019-1031.
  • [22]Halsall J, Gupta V, O’Neill LP, Turner BM, Nightingale KP: Genes are often sheltered from the global histone hyperacetylation induced by HDAC inhibitors. PLoS One 2012, 7:e33453.
  • [23]Van Lint C, Emiliani S, Verdin E: The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr 1996, 5:245-253.
  • [24]Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB, Frietze S, Harrow J, Kaul R, Khatun J, Lajoie BR, Landt SG, Lee BK, Pauli F, Rosenbloom KR, Sabo P, Safi A, Sanyal A, Shoresh N, Simon JM, Song L, Trinklein ND, Altshuler RC, Birney E, Brown JB, Cheng C, Djebali S, Dong X, Ernst J: An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 2012(489):57-74.
  • [25]Bannister AJ, Kouzarides T: Regulation of chromatin by histone modifications. Cell Res 2011, 21:381-395.
  • [26]Henikoff S, Shilatifard A: Histone modification: cause or cog? Trends Genet 2011, 27:389-396.
  • [27]Turner BM: The adjustable nucleosome: an epigenetic signaling module. Trends Genet 2012, 28:436-444.
  • [28]Faiella A, Wernig M, Consalez GG, Hostick U, Hofmann C, Hustert E, Boncinelli E, Balling R, Nadeau JH: A mouse model for valproate teratogenicity: parental effects, homeotic transformations, and altered HOX expression. Hum Mol Genet 2000, 9:227-236.
  • [29]Grier DG, Thompson A, Kwasniewska A, McGonigle GJ, Halliday HL, Lappin TR: The pathophysiology of HOX genes and their role in cancer. J Pathol 2005, 205:154-171.
  • [30]Dolle P, Izpisua-Belmonte JC, Falkenstein H, Renucci A, Duboule D: Coordinate expression of the murine Hox-5 complex homoeobox-containing genes during limb pattern formation. Nature 1989, 342:767-772.
  • [31]Chambeyron S, Bickmore WA: Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 2004, 18:1119-1130.
  • [32]VerMilyea MD, O’Neill LP, Turner BM: Transcription-independent heritability of induced histone modifications in the mouse preimplantation embryo. PLoS One 2009, 4:e6086.
  • [33]Kargul GJ, Dudekula DB, Qian Y, Lim MK, Jaradat SA, Tanaka TS, Carter MG, Ko MS: Verification and initial annotation of the NIA mouse 15K cDNA clone set. Nat Genet 2001, 28:17-18.
  • [34]Lin H, Gupta V, Vermilyea MD, Falciani F, Lee JT, O’Neill LP, Turner BM: Dosage compensation in the mouse balances up-regulation and silencing of X-linked genes. PLoS Biol 2007, 5:e326.
  • [35]Lin H, Halsall JA, Antczak P, O’Neill LP, Falciani F, Turner BM: Relative overexpression of X-linked genes in mouse embryonic stem cells is consistent with Ohno’s hypothesis. Nat Genet 2011, 43:1169-1170. author reply 1171–1162
  • [36]Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Griskin NV, White M, Yang XJ, Zhao Y: Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 2006, 23:607-618.
  • [37]Wilson MA, Ricci AR, Deroo BJ, Archer TK: The histone deacetylase inhibitor trichostatin A blocks progesterone receptor-mediated transactivation of the mouse mammary tumor virus promoter in vivo. J Biol Chem 2002, 277:15171-15181.
  • [38]Jones PA, Archer TK, Baylin SB, Beck S, Berger S, Bernstein BE, Carpten JD, Clark SJ, Costello JF, Doerge RW, Esteller M, Feinberg AP, Gingeras TR, Greally JM, Henikoff S, Herman JG, Jackson-Grusby L, Jenuwein T, Jirtle RL, Kim Y-J, Laird PW, Lim B, Martienssen R, Polyak K, Stunnenberg H, Tlsty TD, Tycko B, Ushijima T, Zhu J: Moving AHEAD with an international human epigenome project. Nature 2008, 454(7205):711-715.
  • [39]Leeb M, Pasini D, Novatchkova M, Jaritz M, Helin K, Wutz A: Polycomb complexes act redundantly to repress genomic repeats and genes. Genes Dev 2010, 24:265-276.
  • [40]Hezroni H, Sailaja BS, Meshorer E: Pluripotency-related, valproic acid (VPA)-induced genome-wide histone H3 lysine 9 (H3K9) acetylation patterns in embryonic stem cells. J Biol Chem 2011, 286:35977-35988.
  • [41]Jiang H, Shukla A, Wang X, Chen WY, Bernstein BE, Roeder RG: Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell 2011, 144:513-525.
  • [42]Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher AG: Chromatin signatures of pluripotent cell lines. Nat Cell Biol 2006, 8:532-538.
  • [43]Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES: A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006, 125:315-326.
  • [44]Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J, Kouzarides T: Active genes are tri-methylated at K4 of histone H3. Nature 2002, 419:407-411.
  • [45]Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Meudenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 2007, 448:553-560.
  • [46]Kashyap V, Gudas LJ, Brenet F, Funk P, Viale A, Scandura JM: Epigenomic reorganization of the clustered Hox genes in embryonic stem cells induced by retinoic acid. J Biol Chem 2011, 286:3250-3260.
  • [47]Lempradl A, Ringrose L: How does noncoding transcription regulate Hox genes? Bioessays 2008, 30:110-121.
  • [48]Johnson CA, White DA, Lavender JS, O’Neill LP, Turner BM: Human class I histone deacetylase complexes show enhanced catalytic activity in the presence of ATP and co-immunoprecipitate with the ATP-dependent chaperone protein Hsp70. J Biol Chem 2002, 277:9590-9597.
  • [49]Jin Q, Yu LR, Wang L, Zhang Z, Kasper LH, Lee JE, Wang C, Brindle PK, Dent SY, Ge K: Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J 2011, 30:249-262.
  • [50]Pasini D, Malatesta M, Jung HR, Walfridsson J, Willer A, Olsson L, Skotte J, Wutz A, Porse B, Jensen ON, Helin K: Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Res 2010, 38:4958-4969.
  • [51]Eskeland R, Freyer E, Leeb M, Wutz A, Bickmore WA: Histone acetylation and the maintenance of chromatin compaction by Polycomb repressive complexes. Cold Spring Harb Symp Quant Biol 2010, 75:71-78.
  • [52]Potocnik AJ, Nielsen PJ, Eichmann K: In vitro generation of lymphoid precursors from embryonic stem cells. EMBO J 1994, 13:5274-5283.
  • [53]Bernstine EG, Koyama H, Ephrussi B: Enhanced expression of alkaline phosphatase in hybrids between neuroblastoma and embryonal carcinoma. Somatic Cell Genet 1977, 3:217-225.
  • [54]Hashemi SM, Soudi S, Shabani I, Naderi M, Soleimani M: The promotion of stemness and pluripotency following feeder-free culture of embryonic stem cells on collagen-grafted 3-dimensional nanofibrous scaffold. Biomaterials 2011, 32:7363-7374.
  • [55]White DA, Belyaev ND, Turner BM: Preparation of site-specific antibodies to acetylated histones. Methods 1999, 19:417-424.
  • [56]O’Neill LP, Turner BM: Immunoprecipitation of native chromatin: NChIP. Methods 2003, 31:76-82.
  文献评价指标  
  下载次数:5次 浏览次数:8次