期刊论文详细信息
BMC Immunology
Human blood monocytes support persistence, but not replication of the intracellular pathogen C. pneumoniae
Viktoria Weber4  Michael B Fischer4  Gerold Stanek1  Beate M Rüger5  Klemens Vierlinger2  Herbert Wiesinger-Mayr2  Tanja Buchacher3 
[1] Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria;Austrian Institute of Technology, Molecular Medicine, Vienna, Austria;Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Danube University Krems, Krems, Austria;Department for Health Sciences and Biomedicine, Danube University Krems, Krems, Austria;Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
关键词: DNA microarray;    Cytokines;    Monocytes;    Endotoxin;    Intracellular pathogens;   
Others  :  1089842
DOI  :  10.1186/s12865-014-0060-1
 received in 2014-08-07, accepted in 2014-12-01,  发布年份 2014
PDF
【 摘 要 】

Background

Intracellular pathogens have devised various mechanisms to subvert the host immune response in order to survive and replicate in host cells. Here, we studied the infection of human blood monocytes with the intracellular pathogen C. pneumoniae and the effect on cytokine and chemokine profiles in comparison to stimulation with LPS.

Results

Monocytes purified from peripheral blood mononuclear cells by negative depletion were infected with C. pneumoniae. While immunofluorescence confirmed the presence of chlamydial lipopolysaccharide (LPS) in the cytoplasm of infected monocytes, real-time PCR did not provide evidence for replication of the intracellular pathogen. Complementary to PCR, C. pneumoniae infection was confirmed by an oligonucleotide DNA microarray for the detection of intracellular pathogens. Raman microspectroscopy revealed different molecular fingerprints for infected and non-infected monocytes, which were mainly due to changes in lipid and fatty acid content. Stimulation of monocytes with C. pneumoniae or with LPS induced similar profiles of tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6, but higher levels of IL-1β, IL-12p40 and IL-12p70 for C. pneumoniae which were statistically significant. C. pneumoniae also induced release of the chemokines MCP-1, MIP-1α and MIP-1β, and CXCL-8, which correlated with TNF-α secretion.

Conclusion

Infection of human blood monocytes with intracellular pathogens triggers altered cytokine and chemokine pattern as compared to stimulation with extracellular ligands such as LPS. Complementing conventional methods, an oligonucleotide DNA microarray for the detection of intracellular pathogens as well as Raman microspectroscopy provide useful tools to trace monocyte infection.

【 授权许可】

   
2014 Buchacher et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128152359107.pdf 2464KB PDF download
Figure 5. 55KB Image download
Figure 4. 61KB Image download
Figure 3. 25KB Image download
Figure 2. 76KB Image download
Figure 1. 100KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Finlay BB, McFadden G: Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 2006, 124(4):767-782.
  • [2]Khan N, Gowthaman U, Pahari S, Agrewala JN: Manipulation of costimulatory molecules by intracellular pathogens: veni, vidi, vici!! PLoS Pathog 2012, 8(6):e1002676.
  • [3]Kern JM, Maass V, Maass M: Molecular pathogenesis of chronic Chlamydia pneumoniae infection: a brief overview. Clin Microbiol Infect 2009, 15(1):36-41.
  • [4]Saikku P: Seroepidemiology in Chlamydia pneumoniae– atherosclerosis association. Eur Heart J 2002, 23(4):263-264.
  • [5]Von HL: Role of persistent infection in the control and severity of asthma: focus on Chlamydia pneumoniae. Eur Respir J 2002, 19(3):546-556.
  • [6]Contini C, Grilli A, Badia L, Guardigni V, Govoni M, Seraceni S: Detection of Chlamydophila pneumoniae in patients with arthritis: significance and diagnostic value. Rheumatol Int 2011, 31(10):1307-1313.
  • [7]Tang YW, Sriram S, Li H, Yao SY, Meng S, Mitchell WM, Stratton CW: Qualitative and quantitative detection of Chlamydophila pneumoniae DNA in cerebrospinal fluid from multiple sclerosis patients and controls. PloS one 2009, 4(4):e5200.
  • [8]Balin BJ, Little CS, Hammond CJ, Appelt DM, Whittum-Hudson JA, Gerard HC, Hudson AP: Chlamydophila pneumoniae and the etiology of late-onset Alzheimer's disease. J Alzheimers Dis 2008, 13(4):371-380.
  • [9]Di Pietro M, Schiavoni G, Sessa V, Pallotta F, Costanzo G, Sessa R: Chlamydia pneumoniae and osteoporosis-associated bone loss: a new risk factor? Osteoporos Int 2013, 24(5):1677-1682.
  • [10]Rizzo A, Di Domenico M, Carratelli CR, Mazzola N, Paolillo R: Induction of proinflammatory cytokines in human osteoblastic cells by Chlamydia pneumoniae. Cytokine 2011, 56(2):450-457.
  • [11]Wyrick PB: Chlamydia trachomatis persistence in vitro: an overview. J Infect Dis 2010, 201(Suppl 2):S88-95.
  • [12]Schachter J: Biology of Chlamydia trachomatis. In Sexually Transmitted Diseases. Edited by Holmes KK SP, Mård PA, Lemon SM, Stamm WE, Piot P, Wasserheit JN. McGraw-Hill, New York; 1999:391-405.
  • [13]Gaydos CA, Summersgill JT, Sahney NN, Ramirez JA, Quinn TC: Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells. Infect Immun 1996, 64(5):1614-1620.
  • [14]Byrne GI, Kalayoglu MV: Chlamydia pneumoniae and atherosclerosis: links to the disease process. Am Heart J 1999, 138(5 Pt 2):S488-490.
  • [15]Lin TM, Campbell LA, Rosenfeld ME, Kuo CC: Monocyte-endothelial cell coculture enhances infection of endothelial cells with Chlamydia pneumoniae. J Infect Dis 2000, 181(3):1096-1100.
  • [16]Quinn TC, Gaydos CA: In vitro infection and pathogenesis of Chlamydia pneumoniae in endovascular cells. Am Heart J 1999, 138(5 Pt 2):S507-511.
  • [17]Rupp J, Koch M, van Zandbergen G, Solbach W, Brandt E, Maass M: Transmission of Chlamydia pneumoniae infection from blood monocytes to vascular cells in a novel transendothelial migration model. FEMS Microbiol Lett 2005, 242(2):203-208.
  • [18]Moazed TC, Kuo CC, Grayston JT, Campbell LA: Evidence of systemic dissemination of Chlamydia pneumoniae via macrophages in the mouse. J Infect Dis 1998, 177(5):1322-1325.
  • [19]Contini C, Seraceni S, Cultrera R, Castellazzi M, Granieri E, Fainardi E: Chlamydophila pneumoniae Infection and Its Role in Neurological Disorders. Interdiscip Perspect Infect Dis 2010, 2010:273573.
  • [20]Di Pietro M, Filardo S, Cazzavillan S, Segala C, Bevilacqua P, Bonoldi E, D'Amore ES, Rassu M, Sessa R: Could past Chlamydial vascular infection promote the dissemination of Chlamydia pneumoniae to the brain? J Biol Regul Homeost Agents 2013, 27(1):155-164.
  • [21]Peters RP, van Agtmael MA, Danner SA, Savelkoul PH, Vandenbroucke-Grauls CM: New developments in the diagnosis of bloodstream infections. The Lancet infectious diseases 2004, 4(12):751-760.
  • [22]Maass M, Harig U: Evaluation of culture conditions used for isolation of Chlamydia pneumoniae. Am J Clin Pathol 1995, 103(2):141-148.
  • [23]Wiesinger-Mayr H, Vierlinger K, Pichler R, Kriegner A, Hirschl AM, Presterl E, Bodrossy L, Noehammer C: Identification of human pathogens isolated from blood using microarray hybridisation and signal pattern recognition. BMC microbiology 2007, 7:78. BioMed Central Full Text
  • [24]Movasaghi Z, Rehman S, Rehman IS: Raman spectroscopy of biological tissues. Appl Spectrosc Rev 2007, 42(5):493-541.
  • [25]Rupp J, Pfleiderer L, Jugert C, Moeller S, Klinger M, Dalhoff K, Solbach W, Stenger S, Laskay T, van Zandbergen G: Chlamydia pneumoniae hides inside apoptotic neutrophils to silently infect and propagate in macrophages. PloS one 2009, 4(6):e6020.
  • [26]Wolf K, Fischer E, Hackstadt T: Degradation of Chlamydia pneumoniae by peripheral blood monocytic cells. Infect Immun 2005, 73(8):4560-4570.
  • [27]Airenne S, Surcel HM, Alakarppa H, Laitinen K, Paavonen J, Saikku P, Laurila A: Chlamydia pneumoniae infection in human monocytes. Infect Immun 1999, 67(3):1445-1449.
  • [28]Marangoni A, Bergamini C, Fato R, Cavallini C, Donati M, Nardini P, Foschi C, Cevenini R: Infection of human monocytes by Chlamydia pneumoniae and Chlamydia trachomatis: an in vitro comparative study. BMC research notes 2014, 7:230. BioMed Central Full Text
  • [29]Szaszak M, Chang JC, Leng W, Rupp J, Ojcius DM, Kelley AM: Characterizing the intracellular distribution of metabolites in intact Chlamydia-infected cells by Raman and two-photon microscopy. Microbes and infection/Institut Pasteur 2013, 15(6–7):461-469.
  • [30]Heinemann M, Susa M, Simnacher U, Marre R, Essig A: Growth of Chlamydia pneumoniae induces cytokine production and expression of CD14 in a human monocytic cell line. Infect Immun 1996, 64(11):4872-4875.
  • [31]Mamata Y, Hakki A, Newton C, Burdash N, Klein TW, Friedman H: Differential effects of Chlamydia pneumoniae infection on cytokine levels in human T lymphocyte- and monocyte-derived cell cultures. Int J Med Microbiol 2007, 297(2):109-115.
  • [32]Abdul-Sater AA, Said-Sadier N, Padilla EV, Ojcius DM: Chlamydial infection of monocytes stimulates IL-1beta secretion through activation of the NLRP3 inflammasome. Microbes and infection/Institut Pasteur 2010, 12(8–9):652-661.
  • [33]Eitel J, Meixenberger K, van Laak C, Orlovski C, Hocke A, Schmeck B, Hippenstiel S, N'Guessan PD, Suttorp N, Opitz B: Rac1 regulates the NLRP3 inflammasome which mediates IL-1beta production in Chlamydophila pneumoniae infected human mononuclear cells. PloS one 2012, 7(1):e30379.
  • [34]Netea MG, Nold-Petry CA, Nold MF, Joosten LA, Opitz B, van der Meer JH, van de Veerdonk FL, Ferwerda G, Heinhuis B, Devesa I, et al.: Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood 2009, 113(10):2324-2335.
  • [35]Trinchieri G: Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003, 3(2):133-146.
  • [36]Netea MG, Selzman CH, Kullberg BJ, Galama JM, Weinberg A, Stalenhoef AF, Van der Meer JW, Dinarello CA: Acellular components of Chlamydia pneumoniae stimulate cytokine production in human blood mononuclear cells. Eur J Immunol 2000, 30(2):541-549.
  • [37]Roblin PM, Dumornay W, Hammerschlag MR: Use of HEp-2 cells for improved isolation and passage of Chlamydia pneumoniae. J Clin Microbiol 1992, 30(8):1968-1971.
  • [38]Campbell LA, Kuo CC: Cultivation and laboratory maintenance of Chlamydia pneumoniae. Curr Protoc Microbiol 2009, 11(11B):11.
  • [39]Wolf HM, Fischer MB, Puhringer H, Samstag A, Vogel E, Eibl MM: Human serum IgA downregulates the release of inflammatory cytokines (tumor necrosis factor-alpha, interleukin-6) in human monocytes. Blood 1994, 83(5):1278-1288.
  • [40]Datta B, Njau F, Thalmann J, Haller H, Wagner AD: Differential infection outcome of Chlamydia trachomatis in human blood monocytes and monocyte-derived dendritic cells. BMC microbiology 2014, 14:209. BioMed Central Full Text
  • [41]Sommer K, Njau F, Wittkop U, Thalmann J, Bartling G, Wagner A, Klos A: Identification of high- and low-virulent strains of Chlamydia pneumoniae by their characterization in a mouse pneumonia model. FEMS immunology and medical microbiology 2009, 55(2):206-214.
  • [42]Goldschmidt P, Rostane H, Sow M, Goepogui A, Batellier L, Chaumeil C: Detection by broad-range real-time PCR assay of Chlamydia species infecting human and animals. Br J Ophthalmol 2006, 90(11):1425-1429.
  • [43]Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar , Buchner A, Lai T, Steppi S, Jobb G: ARB: a software environment for sequence data. Nucleic acids research 2004, 32(4):1363-1371.
  文献评价指标  
  下载次数:0次 浏览次数:4次