期刊论文详细信息
BMC Genomics
Microbiota diversity and gene expression dynamics in human oral biofilms
Alex Mira1  Aurea Simón-Soro1  Pedro Belda-Ferre1  Alfonso Benítez-Páez2 
[1]Oral Microbiome Group – Department of Health and Genomics, Center for Advanced Research in Public Health (CSISP-FISABIO), Avda. Catalunya 21, 46020 Valencia, Spain
[2]Bioinformatics Analysis Group – GABi. Centro de Investigación y Desarrollo en Biotecnología (CIDBIO), Bogotá, D.C 111221, Colombia
关键词: RNAseq;    RT-qPCR;    Human microbiome;    Biofilm formation;    Metatranscriptomics;    Dental plaque;   
Others  :  1217403
DOI  :  10.1186/1471-2164-15-311
 received in 2013-09-22, accepted in 2014-04-10,  发布年份 2014
PDF
【 摘 要 】

Background

Micro-organisms inhabiting teeth surfaces grow on biofilms where a specific and complex succession of bacteria has been described by co-aggregation tests and DNA-based studies. Although the composition of oral biofilms is well established, the active portion of the bacterial community and the patterns of gene expression in vivo have not been studied.

Results

Using RNA-sequencing technologies, we present the first metatranscriptomic study of human dental plaque, performed by two different approaches: (1) A short-reads, high-coverage approach by Illumina sequencing to characterize the gene activity repertoire of the microbial community during biofilm development; (2) A long-reads, lower-coverage approach by pyrosequencing to determine the taxonomic identity of the active microbiome before and after a meal ingestion. The high-coverage approach allowed us to analyze over 398 million reads, revealing that microbial communities are individual-specific and no bacterial species was detected as key player at any time during biofilm formation. We could identify some gene expression patterns characteristic for early and mature oral biofilms. The transcriptomic profile of several adhesion genes was confirmed through qPCR by measuring expression of fimbriae-associated genes. In addition to the specific set of gene functions overexpressed in early and mature oral biofilms, as detected through the short-reads dataset, the long-reads approach detected specific changes when comparing the metatranscriptome of the same individual before and after a meal, which can narrow down the list of organisms responsible for acid production and therefore potentially involved in dental caries.

Conclusions

The bacteria changing activity during biofilm formation and after meal ingestion were person-specific. Interestingly, some individuals showed extreme homeostasis with virtually no changes in the active bacterial population after food ingestion, suggesting the presence of a microbial community which could be associated to dental health.

【 授权许可】

   
2014 Benítez-Páez et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150706095842988.pdf 1087KB PDF download
Figure 5. 49KB Image download
Figure 4. 158KB Image download
Figure 3. 96KB Image download
Figure 2. 108KB Image download
Figure 1. 33KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Keijser BJ, Zaura E, Huse SM, van der Vossen JM, Schuren FH, Montijn RC, ten Cate JM, Crielaard W: Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res 2008, 87(11):1016-1020.
  • [2]Ahn J, Yang L, Paster BJ, Ganly I, Morris L, Pei Z, Hayes RB: Oral microbiome profiles: 16S rRNA pyrosequencing and microarray assay comparison. PLoS One 2011, 6(7):e22788.
  • [3]Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simon-Soro A, Pignatelli M, Mira A: The oral metagenome in health and disease. ISME J 2012, 6(1):46-56.
  • [4]Bik EM, Long CD, Armitage GC, Loomer P, Emerson J, Mongodin EF, Nelson KE, Gill SR, Fraser-Liggett CM, Relman DA: Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J 2010, 4(8):962-974.
  • [5]Marsh PD: Dental plaque as a biofilm and a microbial community - implications for health and disease. BMC Oral Health 2006, 6(Suppl 1):S14. BioMed Central Full Text
  • [6]Wilson M: The oral cavity and its indigenous microbiota. In Microbial inhabitants of humans. Edited by Wilson M. New York: Cambridge University Press; 2005:318-374.
  • [7]Jenkinson HF, Lamont RJ: Oral microbial communities in sickness and in health. Trends Microbiol 2005, 13(12):589-595.
  • [8]Palmer RJ Jr, Gordon SM, Cisar JO, Kolenbrander PE: Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J Bacteriol 2003, 185(11):3400-3409.
  • [9]Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ Jr: Communication among oral bacteria. Microbiol Mol Biol Rev 2002, 66(3):486-505.
  • [10]Hojo K, Nagaoka S, Ohshima T, Maeda N: Bacterial interactions in dental biofilm development. J Dent Res 2009, 88(11):982-990.
  • [11]Dige I, Raarup MK, Nyengaard JR, Kilian M, Nyvad B: Actinomyces naeslundii in initial dental biofilm formation. Microbiology 2009, 155(Pt 7):2116-2126.
  • [12]Kolenbrander PE, Andersen RN, Moore LV: Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11 genera of oral bacteria. Infect Immun 1989, 57(10):3194-3203.
  • [13]Periasamy S, Kolenbrander PE: Aggregatibacter actinomycetemcomitans builds mutualistic biofilm communities with Fusobacterium nucleatum and Veillonella species in saliva. Infect Immun 2009, 77(9):3542-3551.
  • [14]Jakubovics NS, Gill SR, Iobst SE, Vickerman MM, Kolenbrander PE: Regulation of gene expression in a mixed-genus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii. J Bacteriol 2008, 190(10):3646-3657.
  • [15]Frias-Lopez J, Duran-Pinedo A: Effect of periodontal pathogens on the metatranscriptome of a healthy multispecies biofilm model. J Bacteriol 2012, 194(8):2082-2095.
  • [16]Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J: Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol 2010, 89:19.10.1-19.10.21.
  • [17]Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, Blankenberg D, Albert I, Taylor J, Miller W, Kent WJ, Nekrutenko A: Galaxy: a platform for interactive large-scale genome analysis. Genome Res 2005, 15(10):1451-1455.
  • [18]Goecks J, Nekrutenko A, Taylor J: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 2010, 11(8):R86. BioMed Central Full Text
  • [19]Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C: Metagenomic biomarker discovery and explanation. Genome Biol 2011, 12(6):R60. BioMed Central Full Text
  • [20]Liu Y, Hu T, Zhang J, Zhou X: Characterization of the Actinomyces naeslundii ureolysis and its role in bacterial aciduricity and capacity to modulate pH homeostasis. Microbiol Res 2006, 161(4):304-310.
  • [21]Takahashi N, Nyvad B: The role of bacteria in the caries process: ecological perspectives. J Dent Res 2011, 90(3):294-303.
  • [22]Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr: Microbial complexes in subgingival plaque. J Clin Periodontol 1998, 25(2):134-144.
  • [23]Chalmers NI, Palmer RJ Jr, Kolenbrander PE, Cisar JO: Characterization of a Streptococcus sp.-Veillonella sp. community micromanipulated from dental plaque. J Bacteriol 2008, 190(24):8145-8154.
  • [24]Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, Reading NC, Villablanca EJ, Wang S, Mora JR, Umesaki Y, Mathis D, Benoist C, Relman DA, Kasper DL: Gut immune maturation depends on colonization with a host-specific microbiota. Cell 2012, 149(7):1578-1593.
  • [25]Dethlefsen L, McFall-Ngai M, Relman DA: An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 2007, 449(7164):811-818.
  • [26]Filoche S, Wong L, Sissons CH: Oral biofilms: emerging concepts in microbial ecology. J Dent Res 2010, 89(1):8-18.
  • [27]Rajilic-Stojanovic M, Heilig HG, Tims S, Zoetendal EG, de Vos WM: Long-term monitoring of the human intestinal microbiota composition. Environ Microbiol 2012, 15:1146-1159.
  • [28]Abiko Y, Sato T, Mayanagi G, Takahashi N: Profiling of subgingival plaque biofilm microflora from periodontally healthy subjects and from subjects with periodontitis using quantitative real-time PCR. J Periodontal Res 2010, 45(3):389-395.
  • [29]Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M: KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007, 35(Web Server issue):W182-W185.
  • [30]Björk GR, Hagervall TG: Transfer RNA modification. In EcoSal—Escherichia coli and Salmonella: cellular and molecular biology. Edited by Böck RCI JB, Neidhardt FC, Nyström T, Rudd KE, Squires CL. Washington, D.C: ASM Press; 2005.
  • [31]Grosjean H: Fine tuning of RNA functions by modification and editing. In Topics in Current Genetics. Edited by Hohmann S. New York: Springer Verlag; 2005.
  • [32]Shin JH, Lee HW, Kim SM, Kim J: Proteomic analysis of Acinetobacter baumannii in biofilm and planktonic growth mode. J Microbiol 2009, 47(6):728-735.
  • [33]Kreth J, Merritt J, Shi W, Qi F: Co-ordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighbouring species. Mol Microbiol 2005, 57(2):392-404.
  • [34]Bhattacharjee MK, Fine DH, Figurski DH: tfoX (sxy)-dependent transformation of Aggregatibacter (Actinobacillus) actinomycetemcomitans. Gene 2007, 399(1):53-64.
  • [35]Pollack-Berti A, Wollenberg MS, Ruby EG: Natural transformation of Vibrio fischeri requires tfoX and tfoY. Environ Microbiol 2010, 12(8):2302-2311.
  • [36]Human Microbiome Project Consortium: A framework for human microbiome research. Nature 2012, 486(7402):215-221.
  • [37]McNab R, Ford SK, El-Sabaeny A, Barbieri B, Cook GS, Lamont RJ: LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J Bacteriol 2003, 185(1):274-284.
  • [38]Nobbs AH, Vajna RM, Johnson JR, Zhang Y, Erlandsen SL, Oli MW, Kreth J, Brady LJ, Herzberg MC: Consequences of a sortase A mutation in Streptococcus gordonii. Microbiology 2007, 153(Pt 12):4088-4097.
  • [39]Ton-That H, Marraffini LA, Schneewind O: Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim Biophys Acta 2004, 1694(1–3):269-278.
  • [40]Ton-That H, Mazmanian SK, Faull KF, Schneewind O: Anchoring of surface proteins to the cell wall of Staphylococcus aureus. Sortase catalyzed in vitro transpeptidation reaction using LPXTG peptide and NH(2)-Gly(3) substrates. J Biol Chem 2000, 275(13):9876-9881.
  • [41]Mishra A, Wu C, Yang J, Cisar JO, Das A, Ton-That H: The Actinomyces oris type 2 fimbrial shaft FimA mediates co-aggregation with oral streptococci, adherence to red blood cells and biofilm development. Mol Microbiol 2010, 77:841-854.
  • [42]Jakubovics NS, Kerrigan SW, Nobbs AH, Stromberg N, van Dolleweerd CJ, Cox DM, Kelly CG, Jenkinson HF: Functions of cell surface-anchored antigen I/II family and Hsa polypeptides in interactions of Streptococcus gordonii with host receptors. Infect Immun 2005, 73(10):6629-6638.
  • [43]Jakubovics NS, Stromberg N, van Dolleweerd CJ, Kelly CG, Jenkinson HF: Differential binding specificities of oral streptococcal antigen I/II family adhesins for human or bacterial ligands. Mol Microbiol 2005, 55(5):1591-1605.
  • [44]Kolenbrander PE, Palmer RJ Jr, Periasamy S, Jakubovics NS: Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol 2010, 8(7):471-480.
  • [45]McNab R, Holmes AR, Clarke JM, Tannock GW, Jenkinson HF: Cell surface polypeptide CshA mediates binding of Streptococcus gordonii to other oral bacteria and to immobilized fibronectin. Infect Immun 1996, 64(10):4204-4210.
  • [46]McNab R, Jenkinson HF, Loach DM, Tannock GW: Cell-surface-associated polypeptides CshA and CshB of high molecular mass are colonization determinants in the oral bacterium Streptococcus gordonii. Mol Microbiol 1994, 14(4):743-754.
  • [47]Stratul S, Didilescu A, Hanganu C, Greabu M, Totan A, Spinu T, Onisei D, Rusu D, Jentsch H, Sculean A: On the molecular basis of biofilm formation. Oral biofilms and systemic infections. TMJ 2008, 58:118-123.
  • [48]Loozen G, Ozcelik O, Boon N, De Mol A, Schoen C, Quirynen M, Teughels W: Inter-bacterial correlations in subgingival biofilms: a large-scale survey. J Clin Periodontol 2014, 41(1):1-10.
  • [49]Ammann TW, Belibasakis GN, Thurnheer T: Impact of early colonizers on in vitro subgingival biofilm formation. PLoS One 2013, 8(12):e83090.
  • [50]Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM: The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009, 37(Database issue):D141-D145.
  • [51]Hartmann M, Howes CG, Abarenkov K, Mohn WW, Nilsson RH: V-Xtractor: an open-source, high-throughput software tool to identify and extract hypervariable regions of small subunit (16S/18S) ribosomal RNA gene sequences. J Microbiol Methods 2010, 83(2):250-253.
  • [52]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.
  • [53]Warnes G, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B: gplots: Various R programming tools for plotting data. The Comprehensive R Archive Network 2009.
  • [54]Huang Y, Gilna P, Li W: Identification of ribosomal RNA genes in metagenomic fragments. Bioinformatics 2009, 25(10):1338-1340.
  • [55]Pruesse E, Peplies J, Glockner FO: SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012, 28(14):1823-1829.
  • [56]Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO: SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007, 35(21):7188-7196.
  • [57]Chen T, Yu WH, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE: The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database (Oxford) 2010, 2010:baq013.
  • [58]Pruitt KD, Tatusova T, Brown GR, Maglott DR: NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 2012, 40(Database issue):D130-D135.
  • [59]Tripp HJ, Hewson I, Boyarsky S, Stuart JM, Zehr JP: Misannotations of rRNA can now generate 90% false positive protein matches in metatranscriptomic studies. Nucleic Acids Res 2011, 39(20):8792-8802.
  • [60]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11(10):R106. BioMed Central Full Text
  • [61]Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA: Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 2007, 35(Web Server issue):W71-W74.
  文献评价指标  
  下载次数:39次 浏览次数:38次