期刊论文详细信息
BMC Evolutionary Biology
Phylogenetic analysis of symbionts in feather-feeding lice of the genus Columbicola: evidence for repeated symbiont replacements
Colin Dale4  Dale H Clayton4  Takema Fukatsu3  Ryuichi Koga3  Kari L Smith4  Tamar Carter2  David L Reed2  Kevin P Johnson1  Kelly F Oakeson4  Wendy A Smith4 
[1] Illinois Natural History Survey, University of Illinois, 1816 S. Oak Street, Champaign, IL 61820, USA;Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA;Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan;Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
关键词: Symbiont replacement;    Co-speciation;    Lice;    Insect;    Symbiosis;   
Others  :  1087250
DOI  :  10.1186/1471-2148-13-109
 received in 2012-09-05, accepted in 2013-05-24,  发布年份 2013
PDF
【 摘 要 】

Background

Many groups of insects have obligate bacterial symbionts that are vertically transmitted. Such associations are typically characterized by the presence of a monophyletic group of bacteria living in a well-defined host clade. In addition the phylogeny of the symbiotic bacteria is typically congruent with that of the host, signifying co-speciation. Here we show that bacteria living in a single genus of feather lice, Columbicola (Insecta: Phthiraptera), present an exception to this typical pattern.

Results

The phylogeny of Columbicola spp. symbionts revealed the presence of three candidate clades, with the most species-rich clade having a comb-like topology with very short internodes and long terminal branches. Evolutionary simulations indicate that this topology is characteristic of a process of repeated symbiont replacement over a brief time period. The two remaining candidate clades in our study exhibit high levels of nucleotide substitution, suggesting accelerated molecular evolution due to relaxed purifying selection or smaller effective population size, which is typical of many vertically transmitted insect symbionts. Representatives of the fast-evolving and slow-evolving symbiont lineages exhibit the same localization, migration, and transmission patterns in their hosts, implying direct replacement.

Conclusions

Our findings suggest that repeated, independent symbiont replacements have taken place over the course of the relatively recent radiation of Columbicola spp. These results are compatible with the notion that lice and other insects have the capability to acquire novel symbionts through the domestication of progenitor strains residing in their local environment.

【 授权许可】

   
2013 Smith et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116024141264.pdf 3229KB PDF download
Figure 5. 94KB Image download
Figure 4. 117KB Image download
Figure 3. 79KB Image download
Figure 2. 73KB Image download
Figure 1. 159KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Douglas AE: Mycetocyte symbiosis in insects. Biol Rev Camb Philos Soc 1989, 64:409-434.
  • [2]Moran NA, Munson MA, Baumann P, Ishikawa H: A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc Roy Soc London Ser B 1993, 253:167-171.
  • [3]Baumann P: Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 2005, 59:155-189.
  • [4]Johnson KP, Clayton DH: The biology, ecology, and evolution of chewing lice. In The chewing lice: world checklist and biological overview. 24th edition. Edited by Price RD, Hellenthal RA, Palma RL, Johnson KP, Clayton DH. Illinois: Natural History Survey Special Publication; 2003:449-476.
  • [5]Bush SE, Price RD, Clayton DH: Descriptions of eight new species of feather lice in the genus Columbicola (Phthiraptera: Philopteridae), with a comprehensive world checklist. J Parasitol 2009, 95:286-294.
  • [6]Malenke JR, Johnson KP, Clayton DH: Host specialization differentiates cryptic species of feather-feeding lice. Evolution 2009, 63:1427-1438.
  • [7]Harbison CW, Bush SE, Malenke JR, Clayton DH: Comparative transmission dynamics of competing parasite species. Ecology 2008, 89:3186-3194.
  • [8]Harbison CW, Clayton DH: Community interactions govern host switching with implications for host-parasite coevolutionary history. PNAS 2011, 108:9525-9529.
  • [9]Clayton DH, Adams RJ, Bush SE: Phthiraptera, the Chewing Lice. In Parasitic diseases of wild birds. Edited by Atkinson CT, Thomas NJ, Hunter DB. Ames, Iowa: Wiley-Blackwell; 2008:515-526.
  • [10]Gillespie JM, Frenkel MJ: The diversity of keratins. Comp Biochem Physiol 1974, 47B:339-346.
  • [11]Waterhouse DF: Digestion in insects. Ann Rev Entomol 1957, 2:1-18.
  • [12]Ries E: Die Symbiose der Lause und Federlinge. Z Morphol Oekol Tiere 1931, 20:233-367.
  • [13]Fukatsu T, Koga R, Smith WA, Tanaka K, Nikoh N, Sasaki-Fukatsu K, Yoshizawa K, Dale C, Clayton DH: Bacterial endosymbiont of the slender pigeon louse Columbicola columbae, allied to endosymbionts of grain weevils and tsetse flies. App Environ Microbiol 2007, 73:6660-6669.
  • [14]Marshall RC, Orwin DFG, Gillespie JM: Structure and biochemistry of mammalian hard keratin. Electron Microsc Rev 1991, 4:47-83.
  • [15]Pei AY, Oberdorf WE, Nossa CW, Agarwal A, Chokshi P, Gerz EA, Jin Z, Lee P, Yang L, Poles M, Brown SM, Sotero S, Desantis T, Brodie E, Nelson K, Pei Z: Diversity of 16S rRNA genes within individual prokaryotic genomes. Appl Environ Microbiol 2010, 76:3886-3897.
  • [16]Wuyts J, Van de Peer Y, De Wachter R: Distribution of substitution rates and location of insertion sites in the tertiary structure of ribosomal RNA. Nucl Acids Res 2001, 29:5017-5028.
  • [17]Clayton AL, Oakeson KF, Gutin M, Pontes A, Dunn DM, von Niederhausern AC, Weiss RB, Fisher M, Dale C: A novel human-infection derived bacterium provides insights into the evolutionary origins of mutualistic insect-bacterial symbioses. PLoS Genet 2012, 8(11):e1002990.
  • [18]Herbeck JT, Degnan PH, Wernegreen JJ: Non-homogeneous model of sequence evolution indicates independent origins of primary endosymbionts within the enterobacteriales (gamma-Proteobacteria). Mol Biol Evol 2004, 22:20-532.
  • [19]Hoy MA, Jeyaprakash A: Microbial diversity in the predatory mite Metaseiulus occidentalis (Acari: Phytoseiidae) and its prey, Tetranychus urticae (Acari: Tetranychidae). Biol Control 2005, 32:427-441.
  • [20]Shimodira H, Hasegawa M: Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 1999, 16:1114-1116.
  • [21]Johnson KP, Reed DL, Hammond Parker SL, Kim D, Clayton DH: Phylogenetic analysis of nuclear and mitochondrial genes supports species groups for Columbicola (Insecta: Phthiraptera). Mol Phyl Evol 2007, 45:506-518.
  • [22]Page RDM: TreeMap for Macintosh, ver. 1. 0b. 1995. http://taxonomy.zoology.gla.ac.uk/rod/treemap.html webcite
  • [23]Robinson-Rechavi M, Huchon D: RRTree: Relative-Rate Tests between groups of sequences on a phylogenetic tree. Bioinformatics 2000, 16:296-297.
  • [24]Moran NA, McCutcheon JP, Nakabachi A: Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 2008, 42:165-190.
  • [25]Lefevre CH, Charles A, Vallier B, Delobel B, Farrell B, Heddi A: Endosymbiont phylogenesis in the dryophthoridae weevils: evidence for bacterial replacement. Mol Biol Evol 2004, 21:965-973.
  • [26]Conord CL, Despres A, Vallier A, Balmand A, Miquel C, Zundel S, Lemperiere G, Heddi A: Long-term evolutionary stability of bacterial endosymbiosis in curculionoidea: additional evidence of symbiont replacement in the dryophthoridae family. Mol Biol Evol 2008, 25:859-868.
  • [27]Hypsa V, Krizek J: Molecular evidence for polyphyletic origin of the primary symbionts of sucking lice (Phthiraptera, Anoplura). Microb Ecol 2007, 54:242-251.
  • [28]Pereira SL, Johnson KP, Clayton DH, Baker AJ: Mitochondrial and nuclear DNA sequences support a Cretaceous origin of Columbiformes and dispersal-driven radiation in the Paleogene. Syst Biol 2007, 56:656-672.
  • [29]Johnson KP, Weckstein JD: The Central American land bridge as an engine of diversification in New World doves. J Biogeography 2011, 38:1069-1076.
  • [30]Fukatsu T, Ishikawa H: A novel eukaryotic extracellular symbiont in an aphid, Astegopteryx styraci (Homoptera, Aphididae, Hormaphidinae). J Insect Physiol 1992, 38:765-773.
  • [31]Fukatsu T, Ishikawa H: Phylogenetic position of yeast-like symbiont of Hamiltonaphis styraci (Homoptera, Aphididae) based on 18S rDNA sequence. Insect Biochem Mol Biol 1996, 26:383-388.
  • [32]Fukatsu T, Aoki S, Kurosu U, Ishikawa H: Phylogeny of Cerataphidini aphids revealed by their symbiotic microorganisms and basic structure of their galls: Implications for host-symbiont coevolution and evolution of sterile soldier castes. Zoolog Sci 1994, 11:613-623.
  • [33]Bush SE, Clayton DH: The role of body size in host specificity: Reciprocal transfer experiments with feather lice. Evolution 2006, 60:2158-2167.
  • [34]Huigens ME, de Almeida RP, Boons PA, Luck RF, Stouthamer R: Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proc R Soc London, Ser B 2004, 271:509-515.
  • [35]Jaenike J, Polak M, Fiskin A, Helou M, Minhas M: Interspecific transmission of endosymbiotic Spiroplasma by mites. Biol Lett 2007, 3:23-25.
  • [36]Moran NA, Dunbar H: Sexual acquisition of beneficial symbionts in aphids. PNAS 2006, 103:12803-12806.
  • [37]Werren JH, Zhang W, Guo LR: Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc R Soc London, Ser B 1995, 261:55-63.
  • [38]Russell JA, Latorre A, Sabater-Muñoz B, Moya A, Moran NA: Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol Ecol 2003, 12:1061-1075.
  • [39]Weinert LA, Werren JH, Aebi A, Stone GN, Jiggins FM: Evolution and diversity of Rickettsia bacteria. BMC Biol 2009, 7:6. BioMed Central Full Text
  • [40]Dale C, Maudlin I: Sodalis gen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. Int J Syst Bacteriol 1999, 49:267-275.
  • [41]Heddi A, Nardon P: Sitophilus oryzae L: a model for intracellular symbiosis in the Dryophthoridae weevils (Coleoptera). Symbiosis 2005, 39:1-11.
  • [42]Novakova E, Hypsa V: A new Sodalis lineage from blood sucking fly Craterina melbae (Diptera, Hippoboscoidea) originated independently of tsetse flies symbiont Sodalis glossinidius. FEMS Microbiol Lett 2007, 269:131-135.
  • [43]Toju H, Hosokawa T, Koga R, Nikoh N, Meng XY, Kimura N, Fukatsu T: “Candidatus Curculioniphilus buchneri,” a novel clade of bacterial endocellular symbionts from weevils of the genus Curculio. Appl Environ Microbiol 2010, 76:275-282.
  • [44]Grunwald S, Pilhofer M, Höll W: Microbial associations in gut systems of wood- and bark-inhabiting longhorned beetles [Coleptera: Cerambycidae]. Syst Appl Microbiol 2010, 33:25-34.
  • [45]Kaiwa N, Hosokawa T, Kikuchi Y, Nikoh N, Meng XY, Kimura N, Ito M, Fukatsu T: Primary gut symbiont and secondary, Sodalis-allied symbiont of the Scutellerid stinkbug. Appl Environ Microbiol 2010, 76:3486-3494.
  • [46]Kaiwa N, Hosokawa T, Kikuchi Y, Nikoh N, Meng XY, Kimura N, Ito M, Fukatsu T: Bacterial symbionts of the giant jewel stinkbug Eucoryssus grandis (Hemiptera: Scutelleridae). Zool Sci 2011, 28:169-174.
  • [47]Toju H, Fukatsu T: Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and host plants. Mol Ecol 2011, 20:853-868.
  • [48]Moran NA: Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. PNAS 1996, 93:2873-2878.
  • [49]Wernegreen JJ: Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet 2002, 3:850-861.
  • [50]Clayton DH, Drown DM: Critical evaluation of five methods for quantifying chewing lice (Insecta: Phthiraptera). J Parasitol 2001, 87:1291-1300.
  • [51]Dale C, Plague GR, Wang B, Ochman H, Moran NA: Type III secretion systems and the evolution of mutualistic endosymbiosis. PNAS 2002, 99:12397-12402.
  • [52]Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma 2004, 5:113. BioMed Central Full Text
  • [53]Posada D, Crandall KA: MODELTEST: testing the model of DNA substitution. Bioinformatics 1998, 14:817-818.
  • [54]Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol 2008, 25:1253-1256.
  • [55]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52:696-704.
  • [56]Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17:754-755.
  • [57]Farris JS, Källersjö M, Kluge AG, Bult C: Testing significance of incongruence. Cladistics 1994, 10:315-319.
  • [58]Farris JS, Källersjö M, Kluge AG, Bult C: Constructing a significance test for incongruence. Syst Biol 1995, 44:570-572.
  • [59]Swofford DL: PAUP*. Phylogenetic analysis using parsimony (*and other methods) , Version 4. Sunderland, Massachusetts: Sinauer Associates; 2003.
  • [60]Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Müller KM, Pande N, Shang Z, Yu N, Gutell RR: The Comparative RNA web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinforma 2002, 3:2. BioMed Central Full Text
  • [61]Sakurai M, Koga R, Tsuchida T, Meng XY, Fukatsu T: Rickettsia symbiont in the pea aphid Acyrthosiphon pisum: novel cellular tropism, effect on host fitness, and interaction with the essential symbiont Buchnera. Appl Environ Microbiol 2005, 71:4069-4075.
  • [62]Page RDM: Component analysis: a valiant failure? Cladistics 1990, 6:119-136.
  • [63]Page RDM: Temporal congruence and cladistic analysis of biogeography and cospeciation. Syst Zool 1990, 39:205-226.
  • [64]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 2011, 28:2731-2739.
  文献评价指标  
  下载次数:15次 浏览次数:13次