期刊论文详细信息
Retrovirology
Wide distribution and ancient evolutionary history of simian foamy viruses in New World primates
William M. Switzer5  Joel M. Montgomery1  Matthew R. Kasper3  Daniel G. Bausch6  Patricia Mendoza2  Aris Katzourakis4  Pakorn Aiewsakun4  Hongwei Jia5  Bruno M. Ghersi3 
[1] Centers for Disease Control and Prevention, Atlanta 30333, GA, USA;Wildlife Conservation Society, Lima, Peru;U.S. Naval Medical Research Unit No. 6, Lima, Peru;Department of Zoology, University of Oxford, Oxford OX1 3PS, UK;Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Rd., MS G-45, Atlanta 30329, GA, USA;Tulane School of Public Health and Tropical Hygiene, New Orleans, LA, USA
关键词: Neotropical;    Peru;    South America;    Nonhuman primates;    Co-speciation;    Co-evolution;    Simian foamy virus;    Retrovirus;   
Others  :  1230916
DOI  :  10.1186/s12977-015-0214-0
 received in 2015-04-28, accepted in 2015-10-04,  发布年份 2015
PDF
【 摘 要 】

Background

Although simian foamy viruses (SFV) are the only exogenous retroviruses to infect New World monkeys (NWMs), little is known about their evolutionary history and epidemiology. Previous reports show distinct SFVs among NWMs but were limited to small numbers of captive or wild monkeys from five (Cebus, Saimiri, Ateles, Alouatta, and Callithrix) of the 15 NWM genera. Other studies also used only PCR testing or serological assays with limited validation and may have missed infection in some species. We developed and validated new serological and PCR assays to determine the prevalence of SFV in blood specimens from a large number of captive NWMs in the US (n = 274) and in captive and wild-caught NWMs (n = 236) in Peruvian zoos, rescue centers, and illegal trade markets. Phylogenetic and co-speciation reconciliation analyses of new SFV polymerase (pol) and host mitochondrial cytochrome B sequences, were performed to infer SFV and host co-evolutionary histories.

Results

124/274 (45.2 %) of NWMs captive in the US and 59/157 (37.5 %) of captive and wild-caught NWMs in Peru were SFV WB-positive representing 11 different genera (Alouatta, Aotus, Ateles, Cacajao, Callithrix, Cebus, Lagothrix, Leontopithecus, Pithecia, Saguinus and Saimiri). Seroprevalences were lower at rescue centers (10/53, 18.9 %) compared to zoos (46/97, 47.4 %) and illegal trade markets (3/7, 8/19, 42.9 %) in Peru. Analyses showed that the trees of NWM hosts and SFVs have remarkably similar topologies at the level of species and sub-populations suggestive of co-speciation. Phylogenetic reconciliation confirmed 12 co-speciation events (p < 0.002) which was further supported by obtaining highly similar divergence dates for SFV and host genera and correlated SFV-host branch times. However, four ancient cross-genus transmission events were also inferred for Pitheciinae to Atelidae, Cacajao to ancestral Callithrix or Cebus monkeys, between Callithrix and Cebus monkeys, and Lagothrix to Alouatta.

Conclusions

We demonstrate a broad distribution and stable co-speciation history of SFV in NWMs at the species level. Additional studies are necessary to further explore the epidemiology and natural history of SFV infection of NWMs and to determine the zoonotic potential for persons exposed to infected monkeys in captivity and in the wild.

【 授权许可】

   
2015 Ghersi et al.

【 预 览 】
附件列表
Files Size Format View
20151108082406528.pdf 2058KB PDF download
Fig.4. 77KB Image download
Fig.3. 164KB Image download
Fig.2. 31KB Image download
Fig.1. 119KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

【 参考文献 】
  • [1]Murray SM, Linial ML. Foamy virus infection in primates. J Med Primatol. 2006; 35:225-235.
  • [2]Linial ML, Fan H, Hahn B, Löwer R, Neil J, Quackenbush S, Rethwilm A, Sonigo P, Stoye J, Tristem M. Retroviridae. In: Virus taxonomy, 7th report of the International Committee on taxonomy of viruses. Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA, editors. Elsevier/Academic Press, London; 2004: p.421-440.
  • [3]Flanagan M. Isolation of a spumavirus from a sheep. Aust Vet J. 1992; 69:112-113.
  • [4]Achong BG, Mansell PW, Epstein MA. A new human virus in cultures from a nasopharyngeal carcinoma. J Pathol. 1971; 103:P18.
  • [5]Meiering CD, Linial ML. Historical perspective of foamy virus epidemiology and infection. Clin Microbiol Rev. 2001; 14:165-176.
  • [6]Enders JF, Peebles TC. Propagation in tissue cultures of cytopathogenic agents from patients with measles. Proc Soc Exp Biol Med. 1954; 86:277-286.
  • [7]Linial ML. Foamy viruses are unconventional retroviruses. J Virol. 1999; 73:1747-1755.
  • [8]Khan AS. Simian foamy virus infection in humans: prevalence and management. Expert Rev Anti Infect Ther. 2009; 7:569-580.
  • [9]Switzer WM, Heneine W. Foamy virus infection of humans. In: Liu D, editor. Molecular detection of human viral pathogens, vol 1. Boca Raton: CRC Press, Taylor and Francis Group; 2011. p. 131–46.
  • [10]Betsem E, Rua R, Tortevoye P, Froment A, Gessain A. Frequent and recent human acquisition of simian foamy viruses through apes’ bites in central Africa. PLoS Pathog. 2011; 7:e1002306.
  • [11]Switzer W, Ahuka-Mundeke S, Tang S, Shankar A, Wolfe N, Heneine W, Peeters M, Ayouba A, Mulembakani P, Rimoin A. Simian foamy virus (SFV) infection from multiple monkey species in women from the Democratic Republic of Congo. Retrovirology. 2011; 8:A233. BioMed Central Full Text
  • [12]Boneva RS, Switzer WM, Spira TJ, Bhullar VB, Shanmugam V, Cong ME, Lam L, Heneine W, Folks TM, Chapman LE. Clinical and virological characterization of persistent human infection with simian foamy viruses. AIDS Res Hum Retroviruses. 2007; 23:1330-1337.
  • [13]Schweizer M, Falcone V, Gange J, Turek R, Neumann-Haefelin D. Simian foamy virus isolated from an accidentally infected human individual. J Virol. 1997; 71:4821-4824.
  • [14]Falcone V, Leupold J, Clotten J, Urbanyi E, Herchenroder O, Spatz W, Volk B, Bohm N, Toniolo A, Neumann-Haefelin D, Schweizer M. Sites of simian foamy virus persistence in naturally infected African green monkeys: latent provirus is ubiquitous, whereas viral replication is restricted to the oral mucosa. Virology. 1999; 257:7-14.
  • [15]Rua R, Betsem E, Gessain A. Viral latency in blood and saliva of simian foamy virus-infected humans. PLoS One. 2013; 8:e77072.
  • [16]Blewett EL, Black DH, Lerche NW, White G, Eberle R. Simian foamy virus infections in a baboon breeding colony. Virology. 2000; 278:183-193.
  • [17]Calattini S, Wanert F, Thierry B, Schmitt C, Bassot S, Saib A, Herrenschmidt N, Gessain A. Modes of transmission and genetic diversity of foamy viruses in a Macaca tonkeana colony. Retrovirology. 2006; 3:23. BioMed Central Full Text
  • [18]Switzer WM, Bhullar V, Shanmugam V, Cong ME, Parekh B, Lerche NW, Yee JL, Ely JJ, Boneva R, Chapman LE et al.. Frequent simian foamy virus infection in persons occupationally exposed to nonhuman primates. J Virol. 2004; 78:2780-2789.
  • [19]Heneine W, Switzer WM, Sandstrom P, Brown J, Vedapuri S, Schable CA, Khan AS, Lerche NW, Schweizer M, Neumann-Haefelin D et al.. Identification of a human population infected with simian foamy viruses. Nat Med. 1998; 4:403-407.
  • [20]Calattini S, Betsem EB, Froment A, Mauclere P, Tortevoye P, Schmitt C, Njouom R, Saib A, Gessain A. Simian foamy virus transmission from apes to humans, rural Cameroon. Emerg Infect Dis. 2007; 13:1314-1320.
  • [21]Jones-Engel L, Engel GA, Schillaci MA, Rompis A, Putra A, Suaryana KG, Fuentes A, Beer B, Hicks S, White R et al.. Primate-to-human retroviral transmission in Asia. Emerg Infect Dis. 2005; 11:1028-1035.
  • [22]Switzer WM, Salemi M, Shanmugam V, Gao F, Cong ME, Kuiken C, Bhullar V, Beer BE, Vallet D, Gautier-Hion A et al.. Ancient co-speciation of simian foamy viruses and primates. Nature. 2005; 434:376-380.
  • [23]Hooks JJ, Gibbs CJ, Chou S, Howk R, Lewis M, Gajdusek DC. Isolation of a new simian foamy virus from a spider monkey brain culture. Infect Immun. 1973; 8:804-813.
  • [24]Marczynska B, Jones CJ, Wolfe LG. Syncytium-forming virus of common marmosets (Callithrix jacchus jacchus). Infect Immun. 1981; 31:1261-1269.
  • [25]Johnston PB. Taxonomic features of seven serotypes of simian and ape foamy viruses. Infect Immun. 1971; 3:793-799.
  • [26]Pacheco B, Finzi A, McGee-Estrada K, Sodroski J. Species-specific inhibition of foamy viruses from South American monkeys by New World Monkey TRIM5{alpha} proteins. J Virol. 2010; 84:4095-4099.
  • [27]Thumer L, Rethwilm A, Holmes EC, Bodem J. The complete nucleotide sequence of a New World simian foamy virus. Virology. 2007; 369:191-197.
  • [28]Muniz CP, Troncoso LL, Moreira MA, Soares EA, Pissinatti A, Bonvicino CR, Seuanez HN, Sharma B, Jia H, Shankar A et al.. Identification and characterization of highly divergent simian foamy viruses in a wide range of new world primates from Brazil. PLoS One. 2013; 8:e67568.
  • [29]Stenbak CR, Craig KL, Ivanov SB, Wang X, Soliven KC, Jackson DL, Gutierrez GA, Engel G, Jones-Engel L, Linial ML. New World simian foamy virus infections in vivo and in vitro. J Virol. 2014; 88:982-991.
  • [30]Perelman P, Johnson WE, Roos C, Seuanez HN, Horvath JE, Moreira MA, Kessing B, Pontius J, Roelke M, Rumpler Y et al.. A molecular phylogeny of living primates. PLoS Genet. 2011; 7:e1001342.
  • [31]Schneider H, Sampaio I. The systematics and evolution of New World primates—a review. Mol Phylogenet Evol. 2015; 82 Pt B:348-357.
  • [32]Pacheco V, Cadenillas R, Salas E, Tello C, Zeballos H. Diversidad y endemismo de los mamiferos del Peru. Revista Peruana de Biologia. 2009; 16:5-32.
  • [33]Wolfe ND, Heneine W, Carr JK, Garcia AD, Shanmugam V, Tamoufe U, Torimiro JN, Prosser AT, Lebreton M, Mpoudi-Ngole E et al.. Emergence of unique primate T-lymphotropic viruses among central African bushmeat hunters. Proc Natl Acad Sci USA. 2005; 102:7994-7999.
  • [34]Hussain AI, Shanmugam V, Bhullar VB, Beer BE, Vallet D, Gautier-Hion A, Wolfe ND, Karesh WB, Kilbourn AM, Tooze Z et al.. Screening for simian foamy virus infection by using a combined antigen Western blot assay: evidence for a wide distribution among Old World primates and identification of four new divergent viruses. Virology. 2003; 309:248-257.
  • [35]Wolfe ND, Switzer WM, Carr JK, Bhullar VB, Shanmugam V, Tamoufe U, Prosser AT, Torimiro JN, Wright A, Mpoudi-Ngole E et al.. Naturally acquired simian retrovirus infections in central African hunters. Lancet. 2004; 363:932-937.
  • [36]Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013; 30:2725-2729.
  • [37]Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P. RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics. 2010; 26:2462-2463.
  • [38]Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012; 61:539-542.
  • [39]Conow C, Fielder D, Ovadia Y, Libeskind-Hadas R. Jane: a new tool for the cophylogeny reconstruction problem. Algorithms Mol Biol. 2010; 5:16. BioMed Central Full Text
  • [40]Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007; 7:214. BioMed Central Full Text
  • [41]Hood S, Mitchell JL, Sethi M, Almond NM, Cutler KL, Rose NJ. Horizontal acquisition and a broad biodistribution typify simian foamy virus infection in a cohort of Macaca fascicularis. Virol J. 2013; 10:326. BioMed Central Full Text
  • [42]Kehl T, Tan J, Materniak M. Non-simian foamy viruses: molecular virology, tropism and prevalence and zoonotic/interspecies transmission. Viruses. 2013; 5:2169-2209.
  • [43]Leendertz FH, Zirkel F, Couacy-Hymann E, Ellerbrok H, Morozov VA, Pauli G, Hedemann C, Formenty P, Jensen SA, Boesch C, Junglen S. Interspecies transmission of simian foamy virus in a natural predator–prey system. J Virol. 2008; 82:7741-7744.
  • [44]Liu W, Worobey M, Li Y, Keele BF, Bibollet-Ruche F, Guo Y, Goepfert PA, Santiago ML, Ndjango JB, Neel C et al.. Molecular ecology and natural history of simian foamy virus infection in wild-living chimpanzees. PLoS Pathog. 2008; 4:e1000097.
  • [45]Bodmer RE, Lozano EP. Rural development and sustainable wildlife use in Peru Desarrollo Rural y Utilización de Vida Silvestre en Perú. Conserv Biol. 2001; 15:1163-1170.
  • [46]Maldonado AM, Nijman V, Bearder SK. Trade in night monkeys Aotus spp. in the Brazil–Colombia–Peru tri-border area: international wildlife trade regulations are ineffectively enforced. Endanger Species Res. 2009; 9:143-149.
  • [47]Wolf D, Goff SP. Host restriction factors blocking retroviral replication. Annu Rev Genet. 2008; 42:143-163.
  • [48]Perkovic M, Schmidt S, Marino D, Russell RA, Stauch B, Hofmann H, Kopietz F, Kloke BP, Zielonka J, Strover H et al.. Species-specific inhibition of APOBEC3C by the prototype foamy virus protein bet. J Biol Chem. 2009; 284:5819-5826.
  • [49]Lochelt M, Romen F, Bastone P, Muckenfuss H, Kirchner N, Kim YB, Truyen U, Rosler U, Battenberg M, Saib A et al.. The antiretroviral activity of APOBEC3 is inhibited by the foamy virus accessory Bet protein. Proc Natl Acad Sci USA. 2005; 102:7982-7987.
  • [50]Russell RA, Wiegand HL, Moore MD, Schafer A, McClure MO, Cullen BR. Foamy virus Bet proteins function as novel inhibitors of the APOBEC3 family of innate antiretroviral defense factors. J Virol. 2005; 79:8724-8731.
  文献评价指标  
  下载次数:26次 浏览次数:12次