期刊论文详细信息
Retrovirology
An expanded search for simian foamy viruses (SFV) in Brazilian New World primates identifies novel SFV lineages and host age-related infections
William M. Switzer3  Marcelo A. Soares1  André F. Santos5  Luiz P. Fedullo2  Alcides Pissinatti4  Elisabete Farias5  Anderson M. Augusto2  Lian L. Troncoso5  Anupama Shankar3  Hongwei Jia3  Cláudia P. Muniz3 
[1] Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil;Fundação RIOZOO, Rio de Janeiro, Brazil;Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, 1600 Clifton Rd., MS G45, Atlanta 30329, USA;Centro de Primatologia do Rio de Janeiro, Rio de Janeiro, Brazil;Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
关键词: Zoonoses;    Epidemiology;    Prevalence;    Brazil;    Co-evolution;    Simian foamy virus;    Nonhuman primates;    Neotropical;   
Others  :  1233255
DOI  :  10.1186/s12977-015-0217-x
 received in 2015-06-18, accepted in 2015-10-20,  发布年份 2015
【 摘 要 】

Background

While simian foamy viruses have co-evolved with their primate hosts for millennia, most scientific studies have focused on understanding infection in Old World primates with little knowledge available on the epidemiology and natural history of SFV infection in New World primates (NWPs). To better understand the geographic and species distribution and evolutionary history of SFV in NWPs we extend our previous studies in Brazil by screening 15 genera consisting of 29 NWP species (140 monkeys total), including five genera (Brachyteles, Cacajao, Callimico, Mico, and Pithecia) not previously analyzed. Monkey blood specimens were tested using a combination of both serology and PCR to more accurately estimate prevalence and investigate transmission patterns. Sequences were phylogenetically analyzed to infer SFV and host evolutionary histories.

Results

The overall serologic and molecular prevalences were 42.8 and 33.6 %, respectively, with a combined assay prevalence of 55.8 %. Discordant serology and PCR results were observed for 28.5 % of the samples, indicating that both methods are currently necessary for estimating NWP SFV prevalence. SFV prevalence in sexually mature NWPs with a positive result in any of the WB or PCR assays was 51/107 (47.7 %) compared to 20/33 (61 %) for immature animals. Epidemiological analyses revealed an increase in SFV prevalence with age in captive Cebus monkeys. Phylogenetic analysis identified novel SFVs in Cacajao, Leontopithecus, and Chiropotes species that had 6–37 % nucleotide divergence to other NWP SFV. Comparison of host and SFV phylogenies showed an overall cospeciation evolutionary history with rare ancient and contemporaneous host-switching for Saimiri and Leontopithecus and Cebus xanthosternos, respectively.

Conclusions

We identified novel SFV in four neotropical monkey genera in Brazil and demonstrate that SFV prevalence increases with age in Cebus monkeys. Importantly, our test results suggest that both molecular and serological screening are currently required to accurately determine infection with NWP SFV. Our study significantly expands knowledge of the epidemiology and natural history of NWP SFVs. The tools and information provided in our study will facilitate further investigation of SFV in NWPs and the potential for zoonotic infection with these viruses.

【 授权许可】

   
2015 Muniz et al.

附件列表
Files Size Format View
Fig.5. 74KB Image download
Fig.4. 48KB Image download
Fig.3. 46KB Image download
Fig.2. 19KB Image download
Fig.1. 101KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

【 参考文献 】
  • [1]Linial ML. Foamy viruses are unconventional retroviruses. J Virol. 1999; 73:1747-1755.
  • [2]Khan AS. Simian foamy virus infection in humans: prevalence and management. Expert Rev Anti Infect Ther. 2009; 7:569-580.
  • [3]Switzer WM, Heneine W. Foamy virus infection of humans. In: Molecular detection of human viral pathogens. Liu D, editor. CRC Press, Taylor & Francis Group, Boca Raton; 2011: p.131-146.
  • [4]Jones-Engel L, May CC, Engel GA, Steinkraus KA, Schillaci MA, Fuentes A, Rompis A, Chalise MK, Aggimarangsee N, Feeroz MM et al.. Diverse contexts of zoonotic transmission of simian foamy viruses in Asia. Emerg Infect Dis. 2008; 14:1200-1208.
  • [5]Wu Z, Ren X, Yang L, Hu Y, Yang J, He G, Zhang J, Dong J, Sun L, Du J et al.. Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces. J Virol. 2012; 86:10999-11012.
  • [6]Katzourakis A, Gifford RJ, Tristem M, Gilbert MT, Pybus OG. Macroevolution of complex retroviruses. Science. 2009; 325:1512.
  • [7]Han GZ, Worobey M. An endogenous foamy virus in the aye–aye (Daubentonia madagascariensis). J Virol. 2012; 86:7696-7698.
  • [8]Han GZ, Worobey M. Endogenous viral sequences from the cape golden mole (Chrysochloris asiatica) reveal the presence of foamy viruses in all major placental mammal clades. PLoS One. 2014; 9:e97931.
  • [9]Katzourakis A, Aiewsakun P, Jia H, Wolfe ND, LeBreton M, Yoder AD, Switzer WM. Discovery of prosimian and afrotherian foamy viruses and potential cross species transmissions amidst stable and ancient mammalian co-evolution. Retrovirology. 2014; 11:61. BioMed Central Full Text
  • [10]Han GZ, Worobey M. An endogenous foamy-like viral element in the coelacanth genome. PLoS Pathog. 2012; 8:e1002790.
  • [11]Schartl M, Walter RB, Shen Y, Garcia T, Catchen J, Amores A, Braasch I, Chalopin D, Volff JN, Lesch KP et al.. The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits. Nat Genet. 2013; 45:567-572.
  • [12]Hooks JJ, Gibbs CJ. The foamy viruses. Bacteriol Rev. 1975; 39:169-185.
  • [13]Kupiec JJ, Kay A, Hayat M, Ravier R, Peries J, Galibert F. Sequence analysis of the simian foamy virus type 1 genome. Gene. 1991; 101:185-194.
  • [14]McClure MO, Bieniasz PD, Schulz TF, Chrystie IL, Simpson G, Aguzzi A, Hoad JG, Cunningham A, Kirkwood J, Weiss RA. Isolation of a new foamy retrovirus from orangutans. J Virol. 1994; 68:7124-7130.
  • [15]Broussard SR, Comuzzie AG, Leighton KL, Leland MM, Whitehead EM, Allan JS. Characterization of new simian foamy viruses from African nonhuman primates. Virology. 1997; 237:349-359.
  • [16]Jones-Engel L, Engel GA, Heidrich J, Chalise M, Poudel N, Viscidi R, Barry PA, Allan JS, Grant R, Kyes R. Temple monkeys and health implications of commensalism, Kathmandu, Nepal. Emerg Infect Dis. 2006; 12:900-906.
  • [17]Liu W, Worobey M, Li Y, Keele BF, Bibollet-Ruche F, Guo Y, Goepfert PA, Santiago ML, Ndjango JB, Neel C et al.. Molecular ecology and natural history of simian foamy virus infection in wild-living chimpanzees. PLoS Pathog. 2008; 4:e1000097.
  • [18]Leendertz SA, Junglen S, Hedemann C, Goffe A, Calvignac S, Boesch C, Leendertz FH. High prevalence, coinfection rate, and genetic diversity of retroviruses in wild red colobus monkeys (Piliocolobus badius badius) in Tai National Park, Cote d’Ivoire. J Virol. 2010; 84:7427-7436.
  • [19]Moreira MA, Bonvicino CR, Soares MA, Seuanez HN. Genetic diversity of neotropical primates: phylogeny, population genetics, and animal models for infectious diseases. Cytogenet Genome Res. 2010; 128:88-98.
  • [20]Hooks JJ, Gibbs CJ, Chou S, Howk R, Lewis M, Gajdusek DC. Isolation of a new simian foamy virus from a spider monkey brain culture. Infect Immun. 1973; 8:804-813.
  • [21]Barahona H, Garcia FG, Melendez LV, King NW, Ingalls JK. Isolation and characterization of lymphocyte associated foamy virus from a red uakari monkey (Cacajao rubicundus). J Med Primatol. 1976; 5:253-265.
  • [22]Marczynska B, Jones CJ, Wolfe LG. Syncytium-forming virus of common marmosets (Callithrix jacchus jacchus). Infect Immun. 1981; 31:1261-1269.
  • [23]Thumer L, Rethwilm A, Holmes EC, Bodem J. The complete nucleotide sequence of a New World simian foamy virus. Virology. 2007; 369:191-197.
  • [24]Pacheco B, Finzi A, McGee-Estrada K, Sodroski J. Species-specific inhibition of foamy viruses from South American monkeys by New World Monkey TRIM5{alpha} proteins. J Virol. 2010; 84:4095-4099.
  • [25]Switzer WM, Salemi M, Shanmugam V, Gao F, Cong ME, Kuiken C, Bhullar V, Beer BE, Vallet D, Gautier-Hion A et al.. Ancient co-speciation of simian foamy viruses and primates. Nature. 2005; 434:376-380.
  • [26]Muniz CP, Troncoso LL, Moreira MA, Soares EA, Pissinatti A, Bonvicino CR, Seuanez HN, Sharma B, Jia H, Shankar A et al.. Identification and characterization of highly divergent simian foamy viruses in a wide range of new world primates from Brazil. PLoS One. 2013; 8:e67568.
  • [27]Stenbak CR, Craig KL, Ivanov SB, Wang X, Soliven KC, Jackson DL, Gutierrez GA, Engel G, Jones-Engel L, Linial ML. New World simian foamy virus infections in vivo and in vitro. J Virol. 2014; 88:982-991.
  • [28]Hussain AI, Shanmugam V, Bhullar VB, Beer BE, Vallet D, Gautier-Hion A, Wolfe ND, Karesh WB, Kilbourn AM, Tooze Z et al.. Screening for simian foamy virus infection by using a combined antigen Western blot assay: evidence for a wide distribution among Old World primates and identification of four new divergent viruses. Virology. 2003; 309:248-257.
  • [29]Ghersi BM, Jia H, Aiewsakun P, Katzourakis A, Mendoza P, Busch DG, Kasper MR, Switzer WM. Wide distribution and ancient evolutionary history of simian foamy viruses in New World primates. Retrovirology. In press.
  • [30]Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013; 30:2725-2729.
  • [31]Perelman P, Johnson WE, Roos C, Seuanez HN, Horvath JE, Moreira MA, Kessing B, Pontius J, Roelke M, Rumpler Y et al.. A molecular phylogeny of living primates. PLoS Genet. 2011; 7:e1001342.
  • [32]Auricchio P. Primates of Brazil. São Paulo: Terra Brasilis Educational material of Commerce and Editora Ltda—ME; 1995. pp. 168. ISBN 85-85712-01-5.
  • [33]Alfaro JW, Silva JD, Rylands AB. How different are robust and gracile capuchin monkeys? An argument for the use of sapajus and cebus. Am J Primatol. 2012; 74:273-286.
  • [34]Finstermeier K, Zinner D, Brameier M, Meyer M, Kreuz E, Hofreiter M, Roos C. A mitogenomic phylogeny of living primates. PLoS One. 2013; 8:e69504.
  • [35]Murray SM, Linial ML. Foamy virus infection in primates. J Med Primatol. 2006; 35:225-235.
  • [36]Hood S, Mitchell JL, Sethi M, Almond NM, Cutler KL, Rose NJ. Horizontal acquisition and a broad biodistribution typify simian foamy virus infection in a cohort of Macaca fascicularis. Virol J. 2013; 10:326. BioMed Central Full Text
  • [37]Rua R, Betsem E, Gessain A. Viral latency in blood and saliva of simian foamy virus-infected humans. PLoS One. 2013; 8:e77072.
  • [38]Materniak M, Hechler T, Lochelt M, Kuzmak J. Similar patterns of infection with bovine foamy virus in experimentally inoculated calves and sheep. J Virol. 2013; 87:3516-3525.
  • [39]Lerche NW, Yee JL, Jennings MB. Establishing specific retrovirus-free breeding colonies of macaques: an approach to primary screening and surveillance. Lab Anim Sci. 1994; 44:217-221.
  • [40]Perez SI, Tejedor MF, Novo NM, Aristide L. Divergence times and the evolutionary radiation of new world monkeys (Platyrrhini, Primates): an analysis of fossil and molecular data. PLoS One. 2013; 8:e68029.
  • [41]Bond M, Tejedor MF, Campbell KE, Chornogubsky L, Novo N, Goin F. Eocene primates of South America and the African origins of New World monkeys. Nature. 2015; 520(7548):538-41.
  • [42]Calattini S, Wanert F, Thierry B, Schmitt C, Bassot S, Saib A, Herrenschmidt N, Gessain A. Modes of transmission and genetic diversity of foamy viruses in a Macaca tonkeana colony. Retrovirology. 2006; 3:23. BioMed Central Full Text
  • [43]Blasse A, Calvignac-Spencer S, Merkel K, Goffe AS, Boesch C, Mundry R, Leendertz FH. Mother-offspring transmission and age-dependent accumulation of simian foamy virus in wild chimpanzees. J Virol. 2013; 87:5193-5204.
  文献评价指标  
  下载次数:2次 浏览次数:11次