期刊论文详细信息
BMC Cell Biology
Functional and differential proteomic analyses to identify platelet derived factors affecting ex vivo expansion of mesenchymal stromal cells
Karen Bieback1  Hermann-Josef Thierse3  Harald Klüter1  Lisa Dietz2  Sven Kinzebach1 
[1] Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University; German Red Cross Blood Service Baden-Württemberg, Friedrich-Ebert-Str. 107, Mannheim, Hessen D-68167, Germany;Current address: Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, Dortmund 44227, Germany;Current address: German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin 10589, Germany
关键词: Platelets;    Mass spectrometry;    2D-DIGE;    Mesenchymal stromal cells;    Differential proteomics;    Bone marrow;   
Others  :  855082
DOI  :  10.1186/1471-2121-14-48
 received in 2013-06-14, accepted in 2013-10-23,  发布年份 2013
PDF
【 摘 要 】

Background

Multilineage differentiation, immunomodulation and secretion of trophic factors render mesenchymal stromal cells (MSC) highly attractive for clinical application. Human platelet derivatives such as pooled human platelet lysate (pHPL) and thrombin-activated platelet releasate in plasma (tPRP) have been introduced as alternatives to fetal bovine serum (FBS) to achieve GMP-compliance. However, whereas both pHPL and tPRP support similar proliferation kinetics of lipoaspirate-derived MSC (LA-MSC), only pHPL significantly accelerates bone marrow-derived MSC (BM-MSC) expansion. To identify functionally bioactive factors affecting ex vivo MSC expansion, a differential proteomic approach was performed and identified candidate proteins were evaluated within a bioassay.

Results

Two dimensional difference gel electrophoresis (2D-DIGE), MALDI-TOF analyses and complementary Western blotting revealed 20 differential protein species. 14 candidate proteins occured at higher concentrations in pHPL compared to tPRP and 6 at higher concentrations in tPRP. The candidate proteins fibrinogen and apolipoprotein A1 differentially affected LA- and BM-MSC proliferation.

In a second set of experiments, reference cytokines known to foster proliferation in FBS were tested for their effects in the human supplements. Interestingly although these cytokines promoted proliferation in FBS, they failed to do so when added to the humanized system.

Conclusions

The differential proteomic approach identified novel platelet derived factors differentially acting on human MSC proliferation. Complementary testing of reference cytokines revealed a lack of stimulation in the human supplements compared to FBS. The data describe a new coherent approach to combine proteomic technologies with functional testing to develop novel, humanized, GMP-compliant conditions for MSC expansion.

【 授权许可】

   
2013 Kinzebach et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140722025517700.pdf 3225KB PDF download
83KB Image download
92KB Image download
89KB Image download
89KB Image download
【 图 表 】

【 参考文献 】
  • [1]Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284(5411):143-147.
  • [2]Bieback K, Kinzebach S, Karagianni M: Translating research into clinical scale manufacturing of mesenchymal stromal cells. Stem Cells Int 2011, 2010:193519.
  • [3]Bernardo ME, Pagliara D, Locatelli F: Mesenchymal stromal cell therapy: a revolution in regenerative medicine? Bone Marrow Transplant 2012, 47(2):164-171.
  • [4]Sundin M, Ringden O, Sundberg B, Nava S, Gotherstrom C, Le Blanc K: No alloantibodies against mesenchymal stromal cells, but presence of anti-fetal calf serum antibodies, after transplantation in allogeneic hematopoietic stem cell recipients. Haematologica 2007, 92(9):1208-1215.
  • [5]Mannello F, Tonti GA: Concise review: no breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold! Stem Cells 2007, 25(7):1603-1609.
  • [6]Horwitz EM, Prockop DJ, Gordon PL, Koo WW, Fitzpatrick LA, Neel MD, McCarville ME, Orchard PJ, Pyeritz RE, Brenner MK: Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 2001, 97(5):1227-1231.
  • [7]EMA: Note for Guidance on Minimising the Risk of Transmitting Animal Spongiform Encephalopathy Agents Via Human and Veterinary Medicinal Products. EMA 410 01 rev3 2011.
  • [8]Kinzebach S, Bieback K: Expansion of mesenchymal stem/stromal cells under xenogenic-free culture conditions. Adv Biochem Eng Biotechnol 2013, 129:33-57.
  • [9]Tekkatte C, Gunasingh GP, Cherian KM, Sankaranarayanan K: “Humanized” stem cell culture techniques: the animal serum controversy. Stem Cells Int 2011, 2011:504723.
  • [10]Bieback K, Ha VA, Hecker A, Grassl M, Kinzebach S, Solz H, Sticht C, Klueter H, Bugert P: Altered gene expression in human adipose stem cells cultured with fetal bovine serum compared to human supplements. Tissue Eng Part A 2010, 16(11):3467-3484.
  • [11]Bieback K, Hecker A, Kocaomer A, Lannert H, Schallmoser K, Strunk D, Klueter H: Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells 2009, 27(9):2331-2341.
  • [12]Bieback K, Hecker A, Schlechter T, Hofmann I, Brousos N, Redmer T, Besser D, Klueter H, Muller AM, Becker M: Replicative aging and differentiation potential of human adipose tissue-derived mesenchymal stromal cells expanded in pooled human or fetal bovine serum. Cytotherapy 2012, 14(5):570-583.
  • [13]Kocaoemer A, Kern S, Klueter H, Bieback K: Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells 2007, 25(5):1270-1278.
  • [14]Borzini P, Mazzucco L: Tissue regeneration and in loco administration of platelet derivatives: clinical outcome, heterogeneous products, and heterogeneity of the effector mechanisms. Transfusion 2005, 45(11):1759-1767.
  • [15]Demidova-Rice TN, Wolf L, Deckenback J, Hamblin MR, Herman IM: Human platelet-rich plasma- and extracellular matrix-derived peptides promote impaired cutaneous wound healing in vivo. PLoS One 2012, 7(2):e32146.
  • [16]Omenn GS, States DJ, Adamski M, Blackwell TW, Menon R, Hermjakob H, Apweiler R, Haab BB, Simpson RJ, Eddes JS, et al.: Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 2005, 5(13):3226-3245.
  • [17]Garcia A, Prabhakar S, Brock CJ, Pearce AC, Dwek RA, Watson SP, Hebestreit HF, Zitzmann N: Extensive analysis of the human platelet proteome by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 2004, 4(3):656-668.
  • [18]Piersma SR, Broxterman HJ, Kapci M, de Haas RR, Hoekman K, Verheul HM, Jimenez CR: Proteomics of the TRAP-induced platelet releasate. J Proteomics 2009, 72(1):91-109.
  • [19]Dittrich M, Birschmann I, Stuhlfelder C, Sickmann A, Herterich S, Nieswandt B, Walter U, Dandekar T: Understanding platelets. Lessons from proteomics, genomics and promises from network analysis. Thromb Haemost 2005, 94(5):916-925.
  • [20]Boyanova D, Nilla S, Birschmann I, Dandekar T, Dittrich M: PlateletWeb: a systems biologic analysis of signaling networks in human platelets. Blood 2012, 119(3):e22-e34.
  • [21]Shai E, Rosa I, Parguina AF, Motahedeh S, Varon D, Garcia A: Comparative analysis of platelet-derived microparticles reveals differences in their amount and proteome depending on the platelet stimulus. J Proteomics 2012, 76:287-296.
  • [22]Tucker KL, Kaiser WJ, Bergeron AL, Hu H, Dong JF, Tan TH, Gibbins JM: Proteomic analysis of resting and thrombin-stimulated platelets reveals the translocation and functional relevance of HIP-55 in platelets. Proteomics 2009, 9(18):4340-4354.
  • [23]Zufferey A, Fontana P, Reny JL, Nolli S, Sanchez JC: Platelet proteomics. Mass Spectrom Rev 2012, 31(2):331-351.
  • [24]Flemming A, Schallmoser K, Strunk D, Stolk M, Volk HD, Seifert M: Immunomodulative efficacy of bone marrow-derived mesenchymal stem cells cultured in human platelet lysate. J Clin Immunol 2011, 31(6):1143-1156.
  • [25]Lange C, Cakiroglu F, Spiess AN, Cappallo-Obermann H, Dierlamm J, Zander AR: Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J Cell Physiol 2007, 213(1):18-26.
  • [26]Gardiner EE, D’Souza SE: A mitogenic action for fibrinogen mediated through intercellular adhesion molecule-1. J Biol Chem 1997, 272(24):15474-15480.
  • [27]Ng KM, Lee YK, Lai WH, Chan YC, Fung ML, Tse HF, Siu CW: Exogenous expression of human apoA-I enhances cardiac differentiation of pluripotent stem cells. PLoS One 2011, 6(5):e19787.
  • [28]Shi ZH, Zhao C, Wu H, Wang W, Liu XM: CLIC1 protein: a candidate prognostic biomarker for malignant-transformed hydatidiform moles. Int J Gynecol Cancer 2011, 21(1):153-160.
  • [29]Simpson-Haidaris PJ, Rybarczyk B: Tumors and fibrinogen. The role of fibrinogen as an extracellular matrix protein. Ann N Y Acad Sci 2001, 936:406-425.
  • [30]Ode A, Duda GN, Glaeser JD, Matziolis G, Frauenschuh S, Perka C, Wilson CJ, Kasper G: Toward biomimetic materials in bone regeneration: functional behavior of mesenchymal stem cells on a broad spectrum of extracellular matrix components. J Biomed Mater Res A 2010, 95(4):1114-1124.
  • [31]Ho W, Tawil B, Dunn JC, Wu BM: The behavior of human mesenchymal stem cells in 3D fibrin clots: dependence on fibrinogen concentration and clot structure. Tissue Eng 2006, 12(6):1587-1595.
  • [32]Jungblut PR, Schluter H: Towards the analysis of protein species: an overview about strategies and methods. Amino Acids 2011, 41(2):219-222.
  • [33]Schluter H, Apweiler R, Holzhutter HG, Jungblut PR: Finding one’s way in proteomics: a protein species nomenclature. Chem Cent J 2009, 3:11. BioMed Central Full Text
  • [34]Neary JT, Rathbone MP, Cattabeni F, Abbracchio MP, Burnstock G: Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci 1996, 19(1):13-18.
  • [35]Coppi E, Pugliese AM, Urbani S, Melani A, Cerbai E, Mazzanti B, Bosi A, Saccardi R, Pedata F: ATP modulates cell proliferation and elicits two different electrophysiological responses in human mesenchymal stem cells. Stem Cells 2007, 25(7):1840-1849.
  • [36]Ferrari D, Gulinelli S, Salvestrini V, Lucchetti G, Zini R, Manfredini R, Caione L, Piacibello W, Ciciarello M, Rossi L, et al.: Purinergic stimulation of human mesenchymal stem cells potentiates their chemotactic response to CXCL12 and increases the homing capacity and production of proinflammatory cytokines. Exp Hematol 2011, 39(3):360-374. 374 e361-365
  • [37]Di Virgilio F, Chiozzi P, Falzoni S, Ferrari D, Sanz JM, Venketaraman V, Baricordi OR: Cytolytic P2X purinoceptors. Cell Death Differ 1998, 5(3):191-199.
  • [38]Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Collo G, Buell G, Di Virgilio F: ATP-mediated cytotoxicity in microglial cells. Neuropharmacology 1997, 36(9):1295-1301.
  • [39]Fan X, Liu T, Liu Y, Ma X, Cui Z: Optimization of primary culture condition for mesenchymal stem cells derived from umbilical cord blood with factorial design. Biotechnol Prog 2009, 25(2):499-507.
  • [40]Auletta JJ, Zale EA, Welter JF, Solchaga LA: Fibroblast growth factor-2 enhances expansion of human bone marrow-derived mesenchymal stromal cells without diminishing their immunosuppressive potential. Stem Cells Int 2011, 2011:235176.
  • [41]Neuss S, Becher E, Woltje M, Tietze L, Jahnen-Dechent W: Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells 2004, 22(3):405-414.
  • [42]Scavo LM, Karas M, Murray M, Leroith D: Insulin-like growth factor-I stimulates both cell growth and lipogenesis during differentiation of human mesenchymal stem cells into adipocytes. J Clin Endocr Metab 2004, 89(7):3543-3553.
  • [43]Cheon SJ, Kim JI, Lee JS: Effects of growth factors and kinase inhibitors on the properties of human adipose-stromal cells in different culture conditions. Cell Biol Int 2008, 32(7):784-791.
  • [44]Chieregato K, Castegnaro S, Madeo D, Astori G, Pegoraro M, Rodeghiero F: Epidermal growth factor, basic fibroblast growth factor and platelet-derived growth factor-bb can substitute for fetal bovine serum and compete with human platelet-rich plasma in the ex vivo expansion of mesenchymal stromal cells derived from adipose tissue. Cytotherapy 2011, 13(8):933-943.
  • [45]Fekete N, Gadelorge M, Furst D, Maurer C, Dausend J, Fleury-Cappellesso S, Mailander V, Lotfi R, Ignatius A, Sensebe L, et al.: Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identification of active components. Cytotherapy 2012, 14(5):540-554.
  • [46]Solchaga LA, Penick K, Porter JD, Goldberg VM, Caplan AI, Welter JF: FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J Cell Physiol 2005, 203(2):398-409.
  • [47]Kern S, Eichler H, Stoeve J, Klueter H, Bieback K: Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006, 24(5):1294-1301.
  • [48]Shaw J, Rowlinson R, Nickson J, Stone T, Sweet A, Williams K, Tonge R: Evaluation of saturation labelling two-dimensional difference gel electrophoresis fluorescent dyes. Proteomics 2003, 3(7):1181-1195.
  • [49]May C, Brosseron F, Chartowski P, Meyer HE, Marcus K: Differential proteome analysis using 2D-DIGE. Methods Mol Biol 2012, 893:75-82.
  • [50]Dietz L, Bosque A, Pankert P, Ohnesorge S, Merz P, Anel A, Schnolzer M, Thierse HJ: Quantitative DY-maleimide-based proteomic 2-DE-labeling strategies using human skin proteins. Proteomics 2009, 9(18):4298-4308.
  • [51]Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, Mortensen P, Boucherie H, Mann M: Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U S A 1996, 93(25):14440-14445.
  文献评价指标  
  下载次数:45次 浏览次数:11次