期刊论文详细信息
BMC Neuroscience
A lipidomic approach to the study of human CD4 + T lymphocytes in multiple sclerosis
Anna M Giudetti2  Michele Maffia4  Giorgio Trianni3  Francesca De Robertis3  Piero Del Boccio1  Paola Lunetti2  Lidia De Riccardis2  Antonia Rizzello4  Michele D’Alessandro1  Daniele Vergara4 
[1] Department of Medical, Oral and Biotechnological Sciences, Research Centre on Aging (Ce.S.I), “G. d’Annunzio” University Foundation, Chieti-Pescara, Italy;Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy;Department of Neurology, “Vito Fazzi” Hospital, ASL-Lecce, Piazzetta F. Muratore, Lecce, Italy;Laboratory of Clinical Proteomic, “Giovanni Paolo II” Hospital, ASL-Lecce, Piazzetta F. Muratore, Lecce, Italy
关键词: 9-aminoacridine;    Multiple sclerosis;    MALDI-TOF;    Lipidomics;    CD4+ T lymphocyte;    Cardiolipin;   
Others  :  1228619
DOI  :  10.1186/s12868-015-0183-1
 received in 2015-01-31, accepted in 2015-07-13,  发布年份 2015
PDF
【 摘 要 】

Background

Lipids play different important roles in central nervous system so that dysregulation of lipid pathways has been implicated in a growingnumber of neurodegenerative disorders including multiple sclerosis (MS). MS is the most prevalent autoimmune disorder of the central nervous system, with neurological symptoms caused by inflammation and demyelination. In this study, a lipidomic analysis was performed for the rapid profile of CD4 +T lymphocytes from MS patient and control samples in an untargeted approach.

Methods

A matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry based approach was used for the analysis of lipid extracts using 9-aminoacridine as matrix. Lipids were analyzed in negative mode and selected species fragmented using MALDI tandem mass spectrometry for their structural assignments.

Results

The analysis reveals some modifications in the phospholipid pattern of MS CD4 +T lymphocytes with respect to healthy controls with a significant increase of cardiolipin species in MS samples.

Conclusions

These results demonstrate the feasibility of a MALDI-TOF approach for the analysis of CD4 +lipid extracts and suggest how alterations in the lipid metabolism characterized lymphocytes of MS patients.

【 授权许可】

   
2015 Vergara et al.

【 预 览 】
附件列表
Files Size Format View
20151017020515737.pdf 1613KB PDF download
Figure4. 36KB Image download
Figure3. 34KB Image download
Figure2. 17KB Image download
Figure1. 27KB Image download
【 图 表 】

Figure1.

Figure2.

Figure3.

Figure4.

【 参考文献 】
  • [1]Cottrell DA, Kremenchutzky M, Rice GP, Koopman WJ, Hader W, Baskerville J, et al.: The natural history of multiple sclerosis: a geographically based study. 5. The clinical features and natural history of primary progressive multiple sclerosis. Brain 1999, 122:625-639.
  • [2]Tse HY, Skundric DS, Cruikshank WW, Montgomery PC, Lisak RP: Immunopathology of CD4 + T cell-mediated autoimmune responses to central nervous system antigens: role of IL-16. J Immunol Clin Res. 2013, 1:1006.
  • [3]Zozulya AL, Wiendl H: The role of regulatory T cells in multiple sclerosis. Nat Clin Pract Neurol. 2008, 4:384-398.
  • [4]Chitnis T: The role of CD4 T cells in the pathogenesis of multiple sclerosis. Int Rev Neurobiol 2007, 79:43-72.
  • [5]Lassmann H, Ransohoff RM: The CD4-Th1 model for multiple sclerosis: a critical re-appraisal. Trends Immunol 2004, 25:132-137.
  • [6]Alvarez JI, Cayrol R, Prat A: Disruption of central nervous system barriers in multiple sclerosis. Biochim Biophys Acta 2011, 1812:252-264.
  • [7]Bahbouhi B, Berthelot L, Pettré S, Michel L, Wiertlewski S, Weksler B, et al.: Peripheral blood CD4 + T lymphocytes from multiple sclerosis patients are characterized by higher PSGL-1 expression and transmigration capacity across a human blood-brain barrier-derived endothelial cell line. J Leukoc Biol 2009, 86:1049-1063.
  • [8]Kawamoto E, Nakahashi S, Okamoto T, Imai H, Shimaoka M: Anti-integrin therapy for multiple sclerosis. Autoimmune Dis 2012.
  • [9]Hon GM, Hassan MS, van Rensburg SJ, Abel S, Erasmus RT, Matsha T: Peripheral blood mononuclear cell membrane fluidity and disease outcome in patients with multiple sclerosis. Indian J Hematol Blood Transfus 2012, 28(1):1-6.
  • [10]Gonzalo H, Brieva L, Tatzber F, Jové M, Cacabelos D, Cassanyé A, et al.: Lipidome analysis in multiple sclerosis reveals protein lipoxidative damage as a potential pathogenic mechanism. J Neurochem 2012, 123(4):622-634.
  • [11]Weinstock-Guttman B, Zivadinov R, Mahfooz N, Carl E, Drake A, Schneider J, et al.: Serum lipid profiles are associated with disability and MRI outcomes in multiple sclerosis. Neuroinflammation 2011.
  • [12]Blanksby SJ, Mitchell TW: Advances in mass spectrometry for lipidomics. Annu Rev Anal Chem (Palo Alto Calif) 2010, 3:433-465.
  • [13]Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, et al.: Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 2005, 58:840-846.
  • [14]Lublin FD, Reingold SC: Defining the clinical course of multiple sclerosis: results of an international survey–National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 1996, 46:907-911.
  • [15]Kurtzke JF: Rating neurologic impairment in multiple sclerosis: an Expanded Disability Status Scale (EDSS). Neurology 1983, 33:1444-1452.
  • [16]De Masi R, Vergara D, Pasca S, Acierno R, Greco M, Spagnolo L, et al.: PBMCs protein expression profile in relapsing IFN-treated multiple sclerosis: a pilot study on relation to clinical findings and brain atrophy. J Neuroimmunol 2009, 210(1–2):80-86.
  • [17]Bligh EG, Dyer WJ: A rapid method of total lipid extraction and purification. Can J Med Sci 1959, 37:911-917.
  • [18]Bellanti F, Romano AD, Giudetti AM, Rollo T, Blonda M, Tamborra R, et al.: Many faces of mitochondrial uncoupling during age: damage or defense? J Gerontol A Biol Sci Med Sci 2013, 68(8):892-902.
  • [19]Angelini R, Vitale R, Patil VA, Cocco T, Ludwig B, Greenberg ML, et al.: Lipidomics of intact mitochondria by MALDI-TOF/MS[S]. J Lipid Res 2012, 53(7):1417-1425.
  • [20]Fuchs B, Süss R, Schiller J: An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 2010, 49(4):450-475.
  • [21]Al-Saad KA, Zabrouskov V, Siems WF, Knowles NR, Hannan RM, Hill HH Jr: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of lipids: ionization and prompt fragmentation patterns. Rapid Commun Mass Spectrom 2003, 17(1):87-96.
  • [22]Wang HY, Jackson SN, Woods AS: Direct MALDI-MS analysis of cardiolipin from rat organs sections. J Am Soc Mass Spectrom 2007, 18:567-577.
  • [23]Calder PC, Yaqoob P, Thies F, Wallace FA, Miles EA: Fatty acids and lymphocyte functions. Br J Nutr 2002, 87(Suppl 1):S31-S48.
  • [24]Köfeler HC, Fauland A, Rechberger GN, Trötzmüller M: Mass spectrometry based lipidomics: an overview of technological platforms. Metabolites 2012, 2:19-38.
  • [25]Schwudke D, Schuhmann K, Herzog R, Bornstein SR, Shevchenko A: Shotgun lipidomics on high resolution mass spectrometers. Cold Spring Harb Perspect Biol 2011, 3(9):a004614.
  • [26]Cerruti CD, Benabdellah F, Laprévote O, Touboul D, Brunelle A: MALDI imaging and structural analysis of rat brain lipid negative ions with 9-aminoacridine matrix. Anal Chem 2012, 84(5):2164-2171.
  • [27]Del Boccio P, Pieragostino D, Di Ioia M, Petrucci F, Lugaresi A, De Luca G, et al.: Lipidomic investigations for the characterization of circulating serum lipids in multiple sclerosis. J Proteomics 2011, 74(12):2826-2836.
  • [28]Schmitt F, Hussain G, Dupuis L, Loeffler JP, Henriques A: A plural role for lipids in motor neuron diseases: energy, signaling and structure. Front Cell Neurosci. 2014.
  • [29]Hon GM, Hassan MS, van Rensburg SJ, Abel S, van Jaarsveld P, Erasmus RT, et al.: Red blood cell membrane fluidity in the etiology of multiple sclerosis. J Membr Biol 2009, 232(1–3):25-34.
  • [30]Miana-Mena FJ, Piedrafita E, Gonzalez-Mingot C, Larrode P, Munoz MJ, Martinez-Ballarin E, et al.: Levels of membrane fluidity in the spinal cord and the brain in an animal model of amyotrophic lateral sclerosis. J Bioenerg Biomembr 2011, 43:181-186.
  • [31]Chicco AJ, Sparagna GC: Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol 2007, 292:C33-C44.
  • [32]Sorice M, Circella A, Misasi R, Pittoni V, Garofalo T, Cirelli A, et al.: Cardiolipin on the surface of apoptotic cells as a possible trigger for anti-phospholipid antibodies. Clin Exp Immunol 2000, 122(2):277-284.
  • [33]Amoscato AA, Sparvero LJ, He RR, Watkins S, Bayir H, Kagan VE: Imaging mass spectrometry of diversified cardiolipin molecular species in the brain. Anal Chem 2014, 86(13):6587-6595.
  • [34]Karussis D, Leker RR, Ashkenazi A, Abramsky O: A subgroup of multiple sclerosis patients with anticardiolipin antibodies and unusual clinical manifestations: do they represent a new nosological entity? Ann Neurol 1998, 44(4):629-634.
  • [35]Witte ME, Bø L, Rodenburg RJ, Belien JA, Musters R, Hazes T, et al.: Enhanced number and activity of mitochondria in multiple sclerosis lesions. J Pathol 2009, 219(2):193-204.
  • [36]Mao P, Reddy PH: Is multiple sclerosis a mitochondrial disease? Biochim Biophys Acta 2010, 1802(1):66-79.
  • [37]Wredenberg A, Wibom R, Wilhelmsson H, Graff C, Wiener HH, Burden SJ, et al.: Increased mitochondrial mass in mitochondrial myopathy mice. Proc Natl Acad Sci USA 2002, 99(23):15066-15071.
  • [38]Serviddio G, Bellanti F, Stanca E, Lunetti P, Blonda M, Tamborra R, et al.: Silybin exerts antioxidant effects and induces mitochondrial biogenesis in liver of rat with secondary biliary cirrhosis. Free Radic Biol Med 2014, 73:117-126.
  • [39]Giudetti AM, Cagnazzo R: Beneficial effects of n-3 PUFA on chronic airway inflammatory diseases. Prostaglandins Other Lipid Mediat 2012, 99(3–4):57-67.
  • [40]Ilzecka J: Prostaglandin E2 is increased in amyotrophic lateral sclerosis patients. Acta Neurol Scand 2003, 108:125-129.
  • [41]Pace-Asciak CR: Mass spectra of prostaglandins and related products. Adv Prostaglandin Thromboxane Leukot Res 1989, 18:1-565.
  • [42]Sparagna GC, Johnson CA, McCune SA, Moore RL, Murphy RC: Quantitation of cardiolipin molecular species in spontaneously hypertensive heart failure rats using Electrospray Ionization Mass Spectrometry. J Lipid Res 2005, 46(6):1196-1204.
  • [43]Ho PP, Kanter JL, Johnson AM, Srinagesh HK, Chang EJ, Purdy TM, et al.: Identification of naturally occurring fatty acids of the myelin sheath that resolve neuroinflammation. Sci Transl Med. 2012.
  文献评价指标  
  下载次数:28次 浏览次数:13次