期刊论文详细信息
BMC Cancer
PCA3 noncoding RNA is involved in the control of prostate-cancer cell survival and modulates androgen receptor signaling
Luciana Bueno Ferreira2  Antonio Palumbo2  Kivvi Duarte de Mello2  Cinthya Sternberg2  Mauricio S Caetano2  Felipe Leite de Oliveira2  Adriana Freitas Neves2  Luiz Eurico Nasciutti2  Luiz Ricardo Goulart2  Etel Rodrigues Pereira Gimba1 
[1] Departamento Interdisciplinar, Universidade Federal Fluminense-PURO, Rua Recife s/n, CEP: 28890-000, Rio das Ostras, Rio de Janeiro, Brazil
[2] Universidade Federal Fluminense, Rio de Janeiro, Rio de Janeiro, Brazil
关键词: Noncoding RNA;    Cell survival;    Small interfering RNA;    Prostate cancer;    PCA3;   
Others  :  1080103
DOI  :  10.1186/1471-2407-12-507
 received in 2012-05-15, accepted in 2012-10-19,  发布年份 2012
PDF
【 摘 要 】

Background

PCA3 is a non-coding RNA (ncRNA) that is highly expressed in prostate cancer (PCa) cells, but its functional role is unknown. To investigate its putative function in PCa biology, we used gene expression knockdown by small interference RNA, and also analyzed its involvement in androgen receptor (AR) signaling.

Methods

LNCaP and PC3 cells were used as in vitro models for these functional assays, and three different siRNA sequences were specifically designed to target PCA3 exon 4. Transfected cells were analyzed by real-time qRT-PCR and cell growth, viability, and apoptosis assays. Associations between PCA3 and the androgen-receptor (AR) signaling pathway were investigated by treating LNCaP cells with 100 nM dihydrotestosterone (DHT) and with its antagonist (flutamide), and analyzing the expression of some AR-modulated genes (TMPRSS2, NDRG1, GREB1, PSA, AR, FGF8, CdK1, CdK2 and PMEPA1). PCA3 expression levels were investigated in different cell compartments by using differential centrifugation and qRT-PCR.

Results

LNCaP siPCA3-transfected cells significantly inhibited cell growth and viability, and increased the proportion of cells in the sub G0/G1 phase of the cell cycle and the percentage of pyknotic nuclei, compared to those transfected with scramble siRNA (siSCr)-transfected cells. DHT-treated LNCaP cells induced a significant upregulation of PCA3 expression, which was reversed by flutamide. In siPCA3/LNCaP-transfected cells, the expression of AR target genes was downregulated compared to siSCr-transfected cells. The siPCA3 transfection also counteracted DHT stimulatory effects on the AR signaling cascade, significantly downregulating expression of the AR target gene. Analysis of PCA3 expression in different cell compartments provided evidence that the main functional roles of PCA3 occur in the nuclei and microsomal cell fractions.

Conclusions

Our findings suggest that the ncRNA PCA3 is involved in the control of PCa cell survival, in part through modulating AR signaling, which may raise new possibilities of using PCA3 knockdown as an additional therapeutic strategy for PCa control.

【 授权许可】

   
2012 Ferreira et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141202224134912.pdf 1022KB PDF download
Figure 6. 42KB Image download
Figure 5. 44KB Image download
Figure 4. 76KB Image download
Figure 3. 62KB Image download
Figure 2. 56KB Image download
Figure 1. 62KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Bussemakers MJ, van Bokhoven A, Verhaegh GW, Smit FP, Karthaus HF, Schalken JA, Debruyne FM, Ru N, Isaacs WB: DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res 1999, 59(23):5975-5979.
  • [2]de Kok JB, Verhaegh GW, Roelofs RW, Hessels D, Kiemeney LA, Aalders TW, Swinkels DW, Schalken JA: DD3(PCA3), a very sensitive and specific marker to detect prostate tumors. Cancer Res 2002, 62(9):2695-2698.
  • [3]Tinzl M, Marberger M, Horvath S, Chypre C: DD3PCA3 RNA analysis in urine--a new perspective for detecting prostate cancer. Eur Urol 2004, 46(2):182-186. discussion 187
  • [4]Klecka J, Holubec L, Pesta M, Topolcan O, Hora M, Eret V, Finek J, Chottova-Dvorakova M, Babjuk M, Novak K, et al.: Differential display code 3 (DD3/PCA3) in prostate cancer diagnosis. Anticancer Res 2010, 30(2):665-670.
  • [5]Neves AF, Araujo TG, Biase WK, Meola J, Alcantara TM, Freitas DG, Goulart LR: Combined analysis of multiple mRNA markers by RT-PCR assay for prostate cancer diagnosis. Clinical Biochem 2008, 41(14–15):1191-1198.
  • [6]Landers KA, Burger MJ, Tebay MA, Purdie DM, Scells B, Samaratunga H, Lavin MF, Gardiner RA: Use of multiple biomarkers for a molecular diagnosis of prostate cancer. Int J Cancer 2005, 114(6):950-956.
  • [7]Mearini E, Antognelli C, Del Buono C, Cochetti G, Giannantoni A, Nardelli E, Talesa VN: The combination of urine DD3(PCA3) mRNA and PSA mRNA as molecular markers of prostate cancer. Biomarkers 2009, 14(4):235-243.
  • [8]Cao DL, Ye DW, Zhang HL, Zhu Y, Wang YX, Yao XD: A multiplex model of combining gene-based, protein-based, and metabolite-based with positive and negative markers in urine for the early diagnosis of prostate cancer. Prostate 2011, 71(7):700-710.
  • [9]Salami SS, Schmidt F, Laxman B, Regan MM, Rickman DS, Scherr D, Bueti G, Siddiqui J, Tomlins SA, Wei JT, et al.: Combining urinary detection of TMPRSS2: ERG and PCA3 with serum PSA to predict diagnosis of prostate cancer. Urol Oncol 2011. in press
  • [10]Fan JK, Wei N, Ding M, Gu JF, Liu XR, Li BH, Qi R, Huang WD, Li YH, Xiong XQ, et al.: Targeting Gene-ViroTherapy for prostate cancer by DD3-driven oncolytic virus-harboring interleukin-24 gene. Int J Cancer 2010, 127(3):707-717.
  • [11]Clarke RA, Zhao Z, Guo AY, Roper K, Teng L, Fang ZM, Samaratunga H, Lavin MF, Gardiner RA: New genomic structure for prostate cancer specific gene PCA3 within BMCC1: implications for prostate cancer detection and progression. PLoS One 2009, 4(3):e4995.
  • [12]Schalken JA, Hessels D, Verhaegh G: New targets for therapy in prostate cancer: differential display code 3 (DD3(PCA3)), a highly prostate cancer-specific gene. Urology 2003, 62(5 Suppl 1):34-43.
  • [13]Popa I, Fradet Y, Beaudry G, Hovington H, Beaudry G, Tetu B: Identification of PCA3 (DD3) in prostatic carcinoma by in situ hybridization. Mod Pathol 2007, 20(11):1121-1127.
  • [14]van Bokhoven A, Varella-Garcia M, Korch C, Johannes WU, Smith EE, Miller HL, Nordeen SK, Miller GJ, Lucia MS: Molecular characterization of human prostate carcinoma cell lines. Prostate 2003, 57(3):205-225.
  • [15]Mattick JS: The genetic signatures of noncoding RNAs. PLoS Genet 2009, 5(4):e1000459.
  • [16]Lee K, Liu Y, Mo JQ, Zhang J, Dong Z, Lu S: Vav3 oncogene activates estrogen receptor and its overexpression may be involved in human breast cancer. BMC Cancer 2008, 8:158. BioMed Central Full Text
  • [17]Cunha VM, de Souza W, Noel F: A Ca2+−stimulated, Mg2+−dependent ATPase activity in subcellular fractions from Schistosoma mansoni. FEBS Lett 1988, 241(1–2):65-68.
  • [18]Reebye V, Frilling A, Habib NA, Mintz PJ: Intracellular adaptor molecules and AR signalling in the tumour microenvironment. Cell Signal 2011, 23(6):1017-1021.
  • [19]Seruga B, Ocana A, Tannock IF: Drug resistance in metastatic castration-resistant prostate cancer. Nat Rev Clin Oncol 2011, 8(1):12-23.
  • [20]Shaw G, Purkiss T, Oliver RT, Prowse DM: Re: Christine McKillop. Interview with Jack Schalken: PCA3 and its use as a diagnostic test in prostate cancer. Eur Urol 2006, 50:153-154. Eur Urol 2007, 51(3):860–862
  • [21]Heinlein CA, Chang C: The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol Endocrinol 2002, 16(10):2181-2187.
  • [22]Heinlein CA, Chang C: Androgen receptor in prostate cancer. Endocr Rev 2004, 25(2):276-308.
  • [23]Hessels D, Klein Gunnewiek JM, van Oort I, Karthaus HF, van Leenders GJ, van Balken B, Kiemeney LA, Witjes JA, Schalken JA: DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol 2003, 44(1):8-15. Discussion 15–16
  • [24]Cui Z, Ren S, Lu J, Wang F, Xu W, Sun Y, Wei M, Chen J, Gao X, Xu C, et al.: The prostate cancer-up-regulated long noncoding RNA PlncRNA-1 modulates apoptosis and proliferation through reciprocal regulation of androgen receptor. Urol Oncol 2012. [Epub ahead of print]
  • [25]Mourtada-Maarabouni M, Hedge VL, Kirkham L, Farzaneh F, Williams GT: Growth arrest in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5 (GAS5). J Cell Sci 2008, 121(Pt 7):939-946.
  • [26]Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, et al.: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010, 464(7291):1071-1076.
  • [27]Zheng YS, Zhang H, Zhang XJ, Feng DD, Luo XQ, Zeng CW, Lin KY, Zhou H, Qu LH, Zhang P, et al.: MiR-100 regulates cell differentiation and survival by targeting RBSP3, a phosphatase-like tumor suppressor in acute myeloid leukemia. Oncogene 2012, 31(1):80-92.
  • [28]Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC, Laxman B, Asangani IA, Grasso CS, Kominsky HD, et al.: Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nature Biotechnol 2011, 29(8):742-749.
  • [29]Chung S, Nakagawa H, Uemura M, Piao L, Ashikawa K, Hosono N, Takata R, Akamatsu S, Kawaguchi T, Morizono T, et al.: Association of a novel long non-coding RNA in 8q24 with prostate cancer susceptibility. Cancer Sci 2011, 102(1):245-252.
  • [30]Fu X, Ravindranath L, Tran N, Petrovics G, Srivastava S: Regulation of apoptosis by a prostate-specific and prostate cancer-associated noncoding gene, PCGEM1. DNA Cell Biol 2006, 25(3):135-141.
  • [31]Louro R, Nakaya HI, Amaral PP, Festa F, Sogayar MC, da Silva AM, Verjovski-Almeida S, Reis EM: Androgen responsive intronic non-coding RNAs. BMC Biol 2007, 5:4. BioMed Central Full Text
  • [32]Sreenath TL, Dobi A, Petrovics G, Srivastava S: Oncogenic activation of ERG: A predominant mechanism in prostate cancer. J Carcinog 2011, 10:37.
  • [33]Yao S, Bee A, Brewer D, Dodson A, Beesley C, Ke Y, Ambroisine L, Fisher G, Moller H, Dickinson T, et al.: PRKC-zeta Expression Promotes the Aggressive Phenotype of Human Prostate Cancer Cells and Is a Novel Target for Therapeutic Intervention. Genes Cancer 2010, 1(5):444-464.
  • [34]Satake H, Tamura K, Furihata M, Anchi T, Sakoda H, Kawada C, Iiyama T, Ashida S, Shuin T: The ubiquitin-like molecule interferon-stimulated gene 15 is overexpressed in human prostate cancer. Oncol Rep 2010, 23(1):11-16.
  • [35]Ryan CJ, Tindall DJ: Androgen receptor rediscovered: the new biology and targeting the androgen receptor therapeutically. J Clin Oncol 2011, 29(27):3651-3658.
  • [36]Alimirah F, Chen J, Basrawala Z, Xin H, Choubey D: DU-145 and PC-3 human prostate cancer cell lines express androgen receptor: implications for the androgen receptor functions and regulation. FEBS Lett 2006, 580(9):2294-2300.
  • [37]Waltering KK, Helenius MA, Sahu B, Manni V, Linja MJ, Jänne OA, Visakorpi T: Increased expression of androgen receptor sensitizes prostate cancer cells to low levels of androgens. Cancer Res 2009, 69(20):8141-8149.
  • [38]Mitchell S, Abel P, Ware M, Stamp G, Lalani EN: Phenotypic and genotypic characterization of commonly used human prostatic cell lines. BJU Int 2000, 85:932-944.
  • [39]Chlenski A, Nakashiro K, Ketels KV, Korovaitseva GI, Oyasu R: Androgen receptor expression in androgen- independent prostate cancer cell lines. Prostate 2001, 47:66-75.
  • [40]Culig Z, Klocker H, Eberle J, Kaspar F, Hobisch A, Cronauer MV, Bartsch G: DNA sequence of the androgen receptor in prostatic tumor cell lines and tissue specimens assessed by means of the polymerase chain reaction. Prostate 1993, 22:11-22.
  • [41]Edelstein RA, Carr MC, Caesar R, Young M, Atala A, Freeman MR: Detection of human androgen receptor mRNA expression abnormalities by competitive PCR. DNA Cell Biol 1994, 13:265-273.
  • [42]Tilley WD, Bentel JM, Aspinall JO, Hall RE, Horsfall DJ: Evidence for a novel mechanism of androgen resistance in the human prostate cancer cell line, PC-3. Steroids 1995, 60:180-186.
  • [43]Jarrard DF, Kinoshita H, Shi Y, Sandefur C, Hoff D, Meisner LF, Chang C, Herman JG, Isaacs WB, Nassif N: Methylation of the androgen receptor promoter CpG island is associated with loss of androgen receptor expression in prostate cancer cells. Cancer Res 1998, 58:5310-5314.
  • [44]Buchanan G, Craft PS, Yang M, Cheong A, Prescott J, Jia L, Coetzee GA, Tilley WD: PC-3 cells with enhanced androgen receptor signaling: a model for clonal selection in prostate cancer. Prostate 2004, 60:352-366.
  • [45]Cao P, Deng Z, Wan M, Huang W, Cramer SD, Xu J, Lei M, Sui G: MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1α/HIF-1β. Mol Cancer 2010, 9:108. BioMed Central Full Text
  • [46]Ribas J, Lupold SE: The transcriptional regulation of miR-21, its multiple transcripts, and their implication in prostate cancer. Cell Cycle 2010, 9(5):923-929.
  • [47]Verhaegh GW, van Bokhoven A, Smit F, Schalken JA, Bussemakers MJ: Isolation and characterization of the promoter of the human prostate cancer-specific DD3 gene. J Biol Chem 2000, 275(48):37496-37503.
  • [48]Denayer S, Helsen C, Thorrez L, Haelens A, Claessens F: The rules of DNA recognition by the androgen receptor. Mol Endocrinol 2010, 24(5):898-913.
  • [49]Massie CE, Adryan B, Barbosa-Morais NL, Lynch AG, Tran MG, Neal DE, Mills IG: New androgen receptor genomic targets show an interaction with the ETS1 transcription factor. EMBO Rep 2007, 8(9):871-878.
  • [50]Lamont KR, Tindall DJ: Minireview: Alternative activation pathways for the androgen receptor in prostate cancer. Mol Endocrinol 2011, 25(6):897-907.
  • [51]Ngan S, Stronach EA, Photiou A, Waxman J, Ali S, Buluwela L: Microarray coupled to quantitative RT-PCR analysis of androgen-regulated genes in human LNCaP prostate cancer cells. Oncogene 2009, 28(19):2051-2063.
  • [52]Mattila MM, Harkonen PL: Role of fibroblast growth factor 8 in growth and progression of hormonal cancer. Cytokine Growth Factor Rev 2007, 18(3–4):257-266.
  • [53]Flores O, Wang Z, Knudsen KE, Burnstein KL: Nuclear targeting of cyclin-dependent kinase 2 reveals essential roles of cyclin-dependent kinase 2 localization and cyclin E in vitamin D-mediated growth inhibition. Endocrinology 2010, 151(3):896-908.
  • [54]Rae JM, Johnson MD, Cordero KE, Scheys JO, Larios JM, Gottardis MM, Pienta KJ, Lippman ME: GREB1 is a novel androgen-regulated gene required for prostate cancer growth. Prostate 2006, 66(8):886-894.
  • [55]Li H, Xu LL, Masuda K, Raymundo E, McLeod DG, Dobi A, Srivastava S: A feedback loop between the androgen receptor and a NEDD4-binding protein, PMEPA1, in prostate cancer cells. J Biol Chem 2008, 283(43):28988-28995.
  • [56]Richter E, Masuda K, Cook C, Ehrich M, Tadese AY, Li H, Owusu A, Srivastava S, Dobi A: A role for DNA methylation in regulating the growth suppressor PMEPA1 gene in prostate cancer. Epigenetics 2007, 2(2):100-109.
  • [57]Grad JM, Dai JL, Wu S, Burnstein KL: Multiple androgen response elements and a Myc consensus site in the androgen receptor (AR) coding region are involved in androgen-mediated up-regulation of AR messenger RNA. Mol Endocrinol 1999, 13(11):1896-1911.
  • [58]Ostling P, Leivonen SK, Aakula A, Kohonen P, Makela R, Hagman Z, Edsjo A, Kangaspeska S, Edgren H, Nicorici D, et al.: Systematic analysis of microRNAs targeting the androgen receptor in prostate cancer cells. Cancer Res 2011, 71(5):1956-1967.
  • [59]Sikand K, Slaibi JE, Singh R, Slane SD, Shukla GC: miR 488* inhibits androgen receptor expression in prostate carcinoma cells. Int J Cancer 2011, 129(4):810-819.
  • [60]Lilja H: Biology of prostate-specific antigen. Urology 2003, 62(5 Suppl 1):27-33.
  • [61]Pflueger D, Rickman DS, Sboner A, Perner S, LaFargue CJ, Svensson MA, Moss BJ, Kitabayashi N, Pan Y, de la Taille A, et al.: N-myc downstream regulated gene 1 (NDRG1) is fused to ERG in prostate cancer. Neoplasia 2009, 11(8):804-811.
  • [62]Chen YW, Lee MS, Lucht A, Chou FP, Huang W, Havighurst TC, Kim K, Wang JK, Antalis TM, Johnson MD, et al.: TMPRSS2, a serine protease expressed in the prostate on the apical surface of luminal epithelial cells and released into semen in prostasomes, is misregulated in prostate cancer cells. Am J Pathol 2010, 176(6):2986-2996.
  • [63]Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE, Cao Q, Prensner JR, Rubin MA, Shah RB, et al.: Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 2008, 10(2):177-188.
  • [64]Rearick D, Prakash A, McSweeny A, Shepard SS, Fedorova L, Fedorov A: Critical association of ncRNA with introns. Nucleic Acids Res 2011, 39(6):2357-2366.
  • [65]Gnanapragasam VJ, Robson CN, Leung HY, Neal DE: Androgen receptor signalling in the prostate. BJU Int 2000, 86(9):1001-1013.
  • [66]Ramberg H, Alshbib A, Berge V, Svindland A, Tasken KA: Regulation of PBX3 expression by androgen and Let-7d in prostate cancer. Mol Cancer 2011, 10:50. BioMed Central Full Text
  • [67]van de Wijngaart DJ, Dubbink HJ, van Royen ME, Trapman J, Jenster G: Androgen receptor coregulators: recruitment via the coactivator binding groove. Mol Cell Endocrinol 2012, 352(1–2):57-69.
  • [68]Culig Z, Comuzzi B, Steiner H, Bartsch G, Hobisch A: Expression and function of androgen receptor coactivators in prostate cancer. J Steroid Biochem Mol Biol 2004, 92(4):265-271.
  • [69]Ip JY, Nakagawa S: Long non-coding RNAs in nuclear bodies. Dev Growth Differ 2012, 54:44-54.
  • [70]Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z, Zhang MQ, Sedel F, Jourdren L, Coulpier F, et al.: A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 2010, 29(18):3082-3093.
  • [71]Chen LL, Carmichael GG: Long noncoding RNAs in mammalian cells: what, where, and why? Wiley Interdiscip Rev RNA 2010, 1(1):2-21.
  • [72]Panzitt K, Tschernatsch MM, Guelly C, Moustafa T, Stradner M, Strohmaier HM, Buck CR, Denk H, Schroeder R, Trauner M, Zatloukal K: Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 2007, 132(1):330-342.
  • [73]Makarova JA, Kramerov DA: Noncoding RNA of U87 host gene is associated with ribosomes and is relatively resistant to nonsense-mediated decay. Gene 2005, 363:51-60.
  文献评价指标  
  下载次数:49次 浏览次数:9次