期刊论文详细信息
BMC Genomics
Analyses of Catharanthus roseus and Arabidopsis thaliana WRKY transcription factors reveal involvement in jasmonate signaling
Ling Yuan1  Barunava Patra1  Sitakanta Pattanaik1  Craig Schluttenhofer2 
[1] Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA;Department of Plant and Soil Science, University of Kentucky, Lexington, KY 40546, USA
关键词: WRKY transcription factors;    Secondary metabolism;    Transcriptome;    Terpenoid indole alkaloid;    Catharanthus roseus;   
Others  :  857074
DOI  :  10.1186/1471-2164-15-502
 received in 2013-10-04, accepted in 2014-06-13,  发布年份 2014
PDF
【 摘 要 】

Background

To combat infection to biotic stress plants elicit the biosynthesis of numerous natural products, many of which are valuable pharmaceutical compounds. Jasmonate is a central regulator of defense response to pathogens and accumulation of specialized metabolites. Catharanthus roseus produces a large number of terpenoid indole alkaloids (TIAs) and is an excellent model for understanding the regulation of this class of valuable compounds. Recent work illustrates a possible role for the Catharanthus WRKY transcription factors (TFs) in regulating TIA biosynthesis. In Arabidopsis and other plants, the WRKY TF family is also shown to play important role in controlling tolerance to biotic and abiotic stresses, as well as secondary metabolism.

Results

Here, we describe the WRKY TF families in response to jasmonate in Arabidopsis and Catharanthus. Publically available Arabidopsis microarrays revealed at least 30% (22 of 72) of WRKY TFs respond to jasmonate treatments. Microarray analysis identified at least six jasmonate responsive Arabidopsis WRKY genes (AtWRKY7, AtWRKY20, AtWRKY26, AtWRKY45, AtWRKY48, and AtWRKY72) that have not been previously reported. The Catharanthus WRKY TF family is comprised of at least 48 members. Phylogenetic clustering reveals 11 group I, 32 group II, and 5 group III WRKY TFs. Furthermore, we found that at least 25% (12 of 48) were jasmonate responsive, and 75% (9 of 12) of the jasmonate responsive CrWRKYs are orthologs of AtWRKYs known to be regulated by jasmonate.

Conclusion

Overall, the CrWRKY family, ascertained from transcriptome sequences, contains approximately 75% of the number of WRKYs found in other sequenced asterid species (pepper, tomato, potato, and bladderwort). Microarray and transcriptomic data indicate that expression of WRKY TFs in Arabidopsis and Catharanthus are under tight spatio-temporal and developmental control, and potentially have a significant role in jasmonate signaling. Profiling of CrWRKY expression in response to jasmonate treatment revealed potential associations with secondary metabolism. This study provides a foundation for further characterization of WRKY TFs in jasmonate responses and regulation of natural product biosynthesis.

【 授权许可】

   
2014 Schluttenhofer et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723064423213.pdf 1538KB PDF download
【 参考文献 】
  • [1]Junker RR, Blüthgen N: Floral scents repel facultative flower visitors, but attract obligate ones. Ann Bot 2010, 105(5):777-782.
  • [2]Muroi A, Ramadan A, Nishihara M, Yamamoto M, Ozawa R, Takabayashi J, Arimura G-i: The composite effect of transgenic plant volatiles for acquired immunity to herbivory caused by inter-plant communications. PLoS One 2011, 6(10):e24594.
  • [3]Roepke J, Salim V, Wu M, Thamm AMK, Murata J, Ploss K, Boland W, De Luca V: Vinca drug components accumulate exclusively in leaf exudates of Madagascar periwinkle. Proc Natl Acad Sci 2010, 107(34):15287-15292.
  • [4]Holland JF, Scharlau C, Gailani S, Krant MJ, Olson KB, Horton J, Shnider BI, Lynch JJ, Owens A, Carbone PP, Colsky J, Grob D, Miller SP, Hall TC: Vincristine treatment of advanced cancer: a cooperative study of 392 cases. Cancer Res 1973, 33(6):1258-1264.
  • [5]Binder BYK, Peebles CAM, Shanks JV, San K-Y: The effects of UV-B stress on the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots. Biotechnol Prog 2009, 25(3):861-865.
  • [6]Ramani S, Chelliah J: UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures. BMC Plant Biol 2007, 7(1):61.
  • [7]Menke FLH, Parchmann S, Mueller MJ, Kijne JW, Memelink J: Involvement of the Octadecanoid pathway and protein phosphorylation in fungal elicitor-induced expression of terpenoid indole alkaloid biosynthetic genes in Catharanthus roseus. Plant Physiol 1999, 119(4):1289-1296.
  • [8]Frischknecht PM, Bättig M, Baumann TW: Effect of drought and wounding stress on indole alkaloid formation in Catharanthus roseus. Phytochemistry 1987, 26(3):707-710.
  • [9]Vázquez-Flota F, Carrillo-Pech M, Minero-García Y, de Lourdes M-HM: Alkaloid metabolism in wounded Catharanthus roseus seedlings. Plant Physiol Biochem 2004, 42(7–8):623-628.
  • [10]Jaleel CA, Manivannan P, Kishorekumar A, Sankar B, Gopi R, Somasundaram R, Panneerselvam R: Alterations in osmoregulation, antioxidant enzymes and indole alkaloid levels in Catharanthus roseus exposed to water deficit. Colloids Surf B Biointerfaces 2007, 59(2):150-157.
  • [11]Dutta A, Sen J, Deswal R: Downregulation of terpenoid indole alkaloid biosynthetic pathway by low temperature and cloning of a AP2 type C-repeat binding factor (CBF) from Catharanthus roseus (L) G Don. Plant Cell Rep 2007, 26(10):1869-1878.
  • [12]Dutta A, Sen J, Deswal R: New evidences about strictosidine synthase (Str) regulation by salinity, cold stress and nitric oxide in Catharanthus roseus. J Plant Biochem Biotechnol 2013, 22(1):124-131.
  • [13]Wei S: Methyl jasmonic acid induced expression pattern of terpenoid indole alkaloid pathway genes in Catharanthus roseus seedlings. Plant Growth Regul 2010, 61(3):243-251.
  • [14]Van Der Fits L, Memelink J: The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J 2001, 25(1):43-53.
  • [15]Menke FLH, Champion A, Kijne JW, Memelink J: A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J 1999, 18(16):4455-4463.
  • [16]Zhang H, Hedhili S, Montiel G, Zhang Y, Chatel G, Pré M, Gantet P, Memelink J: The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. Plant J 2011, 67(1):61-71.
  • [17]Sibéril Y, Benhamron S, Memelink J, Giglioli-Guivarc'h N, Thiersault M, Boisson B, Doireau P, Gantet P: Catharanthus roseus G-box binding factors 1 and 2 act as repressors of strictosidine synthase gene expression in cell cultures. Plant Mol Biol 2001, 45(4):477-488.
  • [18]Pauw B, Hilliou FAO, Martin VS, Chatel G, de Wolf CJF, Champion A, Pré M, van Duijn B, Kijne JW, van der Fits L, Memelink J: Zinc finger proteins act as transcriptional repressors of Alkaloid Biosynthesis genes in Catharanthus roseus. J Biol Chem 2004, 279(51):52940-52948.
  • [19]Ren X, Chen Z, Liu Y, Zhang H, Zhang M, Liu Q, Hong X, Zhu J-K, Gong Z: ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J 2010, 63(3):417-429.
  • [20]Jiang Y, Deyholos M: Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 2009, 69(1–2):91-105.
  • [21]Devaiah BN, Karthikeyan AS, Raghothama KG: WRKY75 Transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol 2007, 143(4):1789-1801.
  • [22]Chen L, Zhang L, Yu D: Wounding-Induced WRKY8 Is Involved in Basal Defense in Arabidopsis. Mol Plant Microbe Interact 2010, 23(5):558-565.
  • [23]Zou C, Jiang W, Yu D: Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis. J Exp Bot 2010, 61(14):3901-3914.
  • [24]Li S, Zhou X, Chen L, Huang W, Yu D: Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Mol Cells 2010, 29(5):475-483.
  • [25]Li S, Fu Q, Chen L, Huang W, Yu D: Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 2011, 233(6):1237-1252.
  • [26]Skibbe M, Qu N, Galis I, Baldwin IT: induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. Plant Cell 2008, 20(7):1984-2000.
  • [27]Zheng Z, Qamar SA, Chen Z, Mengiste T: Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 2006, 48(4):592-605.
  • [28]Wang H, Hao J, Chen X, Hao Z, Wang X, Lou Y, Peng Y, Guo Z: Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol Biol 2007, 65(6):799-815.
  • [29]Zhang Y, Wang L: The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol 2005, 5(1):1.
  • [30]Machens F, Becker M, Umrath F, Hehl R: Identification of a novel type of WRKY transcription factor binding site in elicitor-responsive cis-sequences from Arabidopsis thaliana. Plant Mol Biol 2014, 84(4–5):371-385.
  • [31]Brand LH, Fischer NM, Harter K, Kohlbacher O, Wanke D: Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays. Nucleic Acids Res 2013, 41(21):9764-9778.
  • [32]Eulgem T, Rushton PJ, Robatzek S, Somssich IE: The WRKY superfamily of plant transcription factors. Trends Plant Sci 2000, 5(5):199-206.
  • [33]Dong J, Chen C, Chen Z: Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 2003, 51(1):21-37.
  • [34]Kalde M, Barth M, Somssich IE, Lippok B: Members of the Arabidopsis WRKY Group III Transcription Factors Are Part of Different Plant Defense Signaling Pathways. Mol Plant Microbe Interact 2003, 16(4):295-305.
  • [35]Yu D, Chen C, Chen Z: Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 2001, 13(7):1527-1540.
  • [36]Li J, Brader G, Palva ET: The WRKY70 transcription factor: a node of convergence for Jasmonate-Mediated and Salicylate-Mediated signals in plant defense. Plant Cell 2004, 16(2):319-331.
  • [37]Birkenbihl RP, Diezel C, Somssich IE: Arabidopsis WRKY33 is a key transcriptional regulator of Hormonal and Metabolic Responses toward Botrytis cinerea infection. Plant Physiol 2012, 159(1):266-285.
  • [38]Pandey SP, Roccaro M, Schön M, Logemann E, Somssich IE: Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant J 2010, 64(6):912-923.
  • [39]Zheng Z, Mosher S, Fan B, Klessig D, Chen Z: Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol 2007, 7(1):2.
  • [40]Journot-Catalino N, Somssich IE, Roby D, Kroj T: The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 2006, 18(11):3289-3302.
  • [41]L-t W, Zhong G-m, Wang J-m, Li X-f, Song X, Yang Y: Arabidopsis WRKY28 transcription factor is required for resistance to necrotrophic pathogen, Botrytis cinerea. Afr J Microbiol Res 2011, 5(30):5481-5488.
  • [42]Robatzek S, Somssich IE: A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes. Plant J 2001, 28(2):123-133.
  • [43]Hu Y, Dong Q, Yu D: Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Sci 2012, 185:288-297.
  • [44]Zhou C, Zhang L, Duan J, Miki B, Wu K: HISTONE DEACETYLASE19 Is Involved in Jasmonic Acid and Ethylene signaling of pathogen response in Arabidopsis. Plant Cell 2005, 17(4):1196-1204.
  • [45]Kim K-C, Lai Z, Fan B, Chen Z: Arabidopsis WRKY38 and WRKY62 transcription factors interact with Histone Deacetylase 19 in Basal Defense. Plant Cell 2008, 20(9):2357-2371.
  • [46]Suttipanta N, Pattanaik S, Kulshrestha M, Patra B, Singh SK, Yuan L: The transcription factor CrWRKY1 positively regulates the Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus. Plant Physiol 2011, 157(4):2081-2093.
  • [47]Li S, Zhang P, Zhang M, Fu C, Yu L: Functional analysis of a WRKY transcription factor involved in transcriptional activation of the DBAT gene in Taxus chinensis. Plant Biol 2013, 15(1):19-26.
  • [48]Kato N, Dubouzet E, Kokabu Y, Yoshida S, Taniguchi Y, Dubouzet JG, Yazaki K, Sato F: Identification of a WRKY protein as a transcriptional regulator of Benzylisoquinoline Alkaloid Biosynthesis in Coptis japonica. Plant Cell Physiol 2007, 48(1):8-18.
  • [49]Xu Y-H, Wang J-W, Wang S, Wang J-Y, Chen X-Y: Characterization of GaWRKY1, a cotton transcription factor that regulates the Sesquiterpene Synthase Gene (+)-δ-Cadinene Synthase-A. Plant Physiol 2004, 135(1):507-515.
  • [50]Ma D, Pu G, Lei C, Ma L, Wang H, Guo Y, Chen J, Du Z, Wang H, Li G, Ye H, Liu B: Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the Amorpha-4,11-diene synthase gene, a key gene of Artemisinin Biosynthesis. Plant Cell Physiol 2009, 50(12):2146-2161.
  • [51]Zhang Q, Zhu J, Ni Y, Cai Y, Zhang Z: Expression profiling of HbWRKY1, an ethephon-induced WRKY gene in latex from Hevea brasiliensis in responding to wounding and drought. Trees 2012, 26(2):587-595.
  • [52]Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S: Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs Drives Phytoalexin Biosynthesis in Arabidopsis. Plant Cell 2011, 23(4):1639-1653.
  • [53]Sun Y, Niu Y, Xu J, Li Y, Luo H, Zhu Y, Liu M, Wu Q, Song J, Sun C, Chen S: Discovery of WRKY transcription factors through transcriptome analysis and characterization of a novel methyl jasmonate-inducible PqWRKY1 gene from Panax quinquefolius. Plant Cell Tiss Org Cult 2013, 114:269-277.
  • [54]Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu F-F, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N: Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 2010, 468(7322):400-405.
  • [55]Xie D-X, Feys BF, James S, Nieto-Rostro M, Turner JG: COI1: an Arabidopsis gene required for Jasmonate-regulated defense and fertility. Science 1998, 280(5366):1091-1094.
  • [56]Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM, Kazan K: MYC2 differentially modulates diverse Jasmonate-Dependent functions in Arabidopsis. Plant Cell 2007, 19(7):2225-2245.
  • [57]Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R: JASMONATE-INSENSITIVE1 Encodes a MYC Transcription Factor Essential to Discriminate between different Jasmonate-Regulated defense responses in Arabidopsis. Plant Cell 2004, 16(7):1938-1950.
  • [58]Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci 1998, 95(25):14863-14868.
  • [59]Góngora-Castillo E, Childs KL, Fedewa G, Hamilton JP, Liscombe DK, Magallanes-Lundback M, Mandadi KK, Nims E, Runguphan W, Vaillancourt B, Varbanova-Herde M, Dellapenna D, McKnight TD, O'Connor S, Buell CR: Development of transcriptomic resources for interrogating the Biosynthesis of Monoterpene Indole Alkaloids in medicinal plant species. PLoS One 2012, 7(12):e52506.
  • [60]Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH: CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 2011, 39(suppl 1):D225-D229.
  • [61]Li H-L, Zhang L-B, Guo D, Li C-Z, Peng S-Q: Identification and expression profiles of the WRKY transcription factor family in Ricinus communis. Gene 2012, 503(2):248-253.
  • [62]Rushton PJ, Somssich IE, Ringler P, Shen QJ: WRKY transcription factors. Trends Plant Sci 2010, 15(5):247-258.
  • [63]Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud P-F, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin-I T, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, et al.: The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 2008, 319(5859):64-69.
  • [64]Ling J, Jiang W, Zhang Y, Yu H, Mao Z, Gu X, Huang S, Xie B: Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genomics 2011, 12(1):471.
  • [65]Miao L-x, Zhang Y-c, Yang X-f, Jiang G-h: Genome-wide identification and analysis of WRKY transcription factors in Fragaria vesca. J Nucl Agriculture Sci 2012, 8:1124-1131.
  • [66]Pandey SP, Somssich IE: The role of WRKY transcription factors in plant immunity. Plant Physiol 2009, 150(4):1648-1655.
  • [67]Xiong W, Xu X, Zhang L, Wu P, Chen Y, Li M, Jiang H, Wu G: Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.). Gene 2013, 524(2):124-132.
  • [68]The Tomato Genome Consortium: The tomato genome sequence provides insights into fleshy fruit evolution. Nature 2012, 485(7400):635-641.
  • [69]The Potato Genome Sequencing Consortium: Genome sequence and analysis of the tuber crop potato. Nature 2011, 475(7355):189-195.
  • [70]Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E, Choi J, Cheong K, Kim KT, Jung K, Lee GW, Oh SK, Bae C, Kim SB, Lee HY, Kim SY, Kim MS, Kang BC, Jo YD, Yang HB, Jeong HJ, Kang WH, Kwon JK, Shin C, Lim JY, Park JH, Huh JH, Kim JS, Kim BD, et al.: Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 2014, 46(3):270-278.
  • [71]Ibarra-Laclette E, Lyons E, Hernandez-Guzman G, Perez-Torres CA, Carretero-Paulet L, Chang T-H, Lan T, Welch AJ, Juarez MJA, Simpson J, Fernández-Cortés A, Arteaga-Vázquez M, Góngora-Castillo E, Acevedo-Hernández G, Schuster SC, Himmelbauer H, Minoche AE, Xu S, Lynch M, Oropeza-Aburto A, Cervantes-Pérez SA, de Jesús Ortega-Estrada M, Cervantes-Luevano JI, Michael TP, Mockler T, Bryant D, Herrera-Estrella A, Albert VA, Herrera-Estrella L: Architecture and evolution of a minute plant genome. Nature 2013, 498(7452):94-98.
  • [72]Huang S, Gao Y, Liu J, Peng X, Niu X, Fei Z, Cao S, Liu Y: Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Mol Genet Genomics 2012, 287(6):495-513.
  • [73]Wu K-L, Guo Z-J, Wang H-H, Li J: The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Res 2005, 12(1):9-26.
  • [74]Tripathi P, Rabara R, Langum T, Boken A, Rushton D, Boomsma D, Rinerson C, Rabara J, Reese R, Chen X, Rohila JS, Rushton PJ: The WRKY transcription factor family in Brachypodium distachyon. BMC Genomics 2012, 13(1):270.
  • [75]Wei K-F, Chen J, Chen Y-F, Wu L-J, Xie D-X: Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in Maize. DNA Res 2012, 19(2):153-164.
  • [76]Amborella Genome Project: The Amborella genome and the evolution of flowering plants. Science 2013, 342(6165):1241089.
  • [77]Li L, Stoeckert CJ, Roos DS: OrthoMCL: identification of Ortholog groups for eukaryotic genomes. Genome Res 2003, 13(9):2178-2189.
  • [78]Duan M-R, Nan J, Liang Y-H, Mao P, Lu L, Li L, Wei C, Lai L, Li Y, Su X-D: DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis thaliana WRKY1 protein. Nucleic Acids Res 2007, 35(4):1145-1154.
  • [79]van Verk MC, Pappaioannou D, Neeleman L, Bol JF, Linthorst HJM: A Novel WRKY Transcription Factor Is Required for Induction of PR-1a gene expression by Salicylic Acid and Bacterial Elicitors. Plant Physiol 2008, 146(4):1983-1995.
  • [80]Oh S-K, Baek K-H, Park JM, Yi SY, Yu SH, Kamoun S, Choi D: Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense. New Phytol 2008, 177(4):977-989.
  • [81]Sun C, Palmqvist S, Olsson H, Borén M, Ahlandsberg S, Jansson C: A Novel WRKY Transcription Factor, SUSIBA2, participates in sugar signaling in Barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell Online 2003, 15(9):2076-2092.
  • [82]Aerts RJ, Gisi D, De Carolis E, De Luca V, Baumann TW: Methyl jasmonate vapor increases the developmentally controlled synthesis of alkaloids in Catharanthus and Cinchona seedlings. Plant J 1994, 5(5):635-643.
  • [83]Zabetakis I, Edwards R, O’Hagan D: Elicitation of tropane alkaloid biosynthesis in transformed root cultures of Datura stramonium. Phytochemistry 1999, 50(1):53-56.
  • [84]Biondi S, Fornalé S, Oksman-Caldentey KM, Eeva M, Agostani S, Bagni N: Jasmonates induce over-accumulation of methylputrescine and conjugated polyamines in Hyoscyamus muticus L. root cultures. Plant Cell Rep 2000, 19(7):691-697.
  • [85]Yu K-W, Gao W-Y, Son S-H, Paek K-Y: Improvement of ginsenoside production by jasmonic acid and some other elicitors in hairy root culture of ginseng (Panax ginseng C. A. Meyer). In Vitr Cell Dev Biol Plant 2000, 36(5):424-428.
  • [86]Collu G, Unver N, Peltenburg-Looman AMG, van der Heijden R, Verpoorte R, Memelink J: Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 2001, 508(2):215-220.
  • [87]Van der Fits L, Memelink J: ORCA3, a Jasmonate-Responsive transcriptional regulator of plant primary and secondary metabolism. Science 2000, 289(5477):295-297.
  • [88]Peebles CAM, Hughes EH, Shanks JV, San K-Y: Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots over time. Metab Eng 2009, 11(2):76-86.
  • [89]Suttipanta N, Pattanaik S, Gunjan S, Xie CH, Littleton J, Yuan L: Promoter analysis of the Catharanthus roseus geraniol 10-hydroxylase gene involved in terpenoid indole alkaloid biosynthesis. Biochim Biophys Acta (BBA) Gene Struct Expr 2007, 1769(2):139-148.
  • [90]Pan Q, Chen Y, Wang Q, Yuan F, Xing S, Tian Y, Zhao J, Sun X, Tang K: Effect of plant growth regulators on the biosynthesis of vinblastine, vindoline and catharanthine in Catharanthus roseus. Plant Growth Regul 2010, 60(2):133-141.
  • [91]Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inzé D, Van Breusegem F: Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in Anthocyanin Biosynthesis. Plant Physiol 2005, 139(2):806-821.
  • [92]Geu-Flores F, Sherden NH, Courdavault V, Burlat V, Glenn WS, Wu C, Nims E, Cui Y, O/'Connor SE: An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 2012, 492(7427):138-142.
  • [93]Raina S, Wankhede D, Jaggi M, Singh P, Jalmi S, Raghiram B, Sheikh A, Sinha A: CrMPK3, a mitogen activated protein kinase from Catharanthus roseus and its possible role in stress induced biosynthesis of monoterpenoid indole alkaloids. BMC Plant Biol 2012, 12(1):134.
  • [94]Ayora-Talavera T, Chappell J, Lozoya-Gloria E, Loyola-Vargas V: Overexpression in Catharanthus roseus hairy roots of a truncated hamster 3-hydroxy-3-methylglutaryl-CoA reductase gene. Appl Biochem Biotechnol 2002, 97(2):135-145.
  • [95]Chen H, Lai Z, Shi J, Xiao Y, Chen Z, Xu X: Roles of arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol 2010, 10(1):281.
  • [96]Jaleel CA, Sankar B, Sridharan R, Panneerselvam R: Soil salinity alters growth, chlorophyll content, and secondary metabolite accumulation in Catharanthus roseus. Turk J Biol 2008, 32:79-83.
  • [97]Shoji T, Hashimoto T: Tobacco MYC2 Regulates Jasmonate-Inducible Nicotine Biosynthesis Genes Directly and By Way of the NIC2-Locus ERF Genes. Plant Cell Physiol 2011, 52(6):1117-1130.
  • [98]Montiel G, Zarei A, Körbes AP, Memelink J: The Jasmonate-Responsive element from the ORCA3 promoter from Catharanthus roseus is active in Arabidopsis and is controlled by the transcription factor AtMYC2. Plant Cell Physiol 2011, 52(3):578-587.
  • [99]Bolstad BM, Irizarry RA, Åstrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19(2):185-193.
  • [100]Saeed A, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M: TM4: a free, open-source system for microarray data management and analysis. Biotechniques 2003, 34(2):374.
  文献评价指标  
  下载次数:8次 浏览次数:4次