期刊论文详细信息
BMC Genomics
Differential gene expression and metabolomic analyses of Brachypodium distachyon infected by deoxynivalenol producing and non-producing strains of Fusarium graminearum
Marie Dufresne4  Patrick Saindrenan4  Dimitri Heintz2  Vincent Thareau4  Xavier Deguercy4  Floriant Bellvert1  Marie-Laure Martin-Magniette5  Stéphanie Huguet3  Sandrine Balzergue3  Catherine Macadré4  Séjir Chaouch4  Jean-Claude Pasquet4 
[1] Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés – INSA, UMR INSA/CNRS 5504 - UMR INSA/INRA 792, 135 Avenue de Rangueil, Toulouse cedex 4 31077, France;Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche du CNRS, UPR 2357, Plateforme Métabolomique, 28 rue Goethe, Strasbourg 67083, France;INRA/CNRS/UEVE – URGV, Saclay Plant Sciences, 2, rue Gaston Crémieux, CP5708, Evry cedex 91057, France;Institut de Biologie des Plantes, Unité Mixte de Recherche 8618, Saclay Plant Sciences, Université Paris-Sud, Orsay 91405, France;INRA-AgroParisTech, MIA 518, 16 rue Claude Bernard, Paris Cedex 75005, France
关键词: Serotonin;    Metabolic profiling;    Transcriptome;    Brachypodium distachyon;    Fusarium Head Blight;   
Others  :  1216366
DOI  :  10.1186/1471-2164-15-629
 received in 2014-03-26, accepted in 2014-06-18,  发布年份 2014
PDF
【 摘 要 】

Background

Fusarium Head Blight (FHB) caused primarily by Fusarium graminearum (Fg) is one of the major diseases of small-grain cereals including bread wheat. This disease both reduces yields and causes quality losses due to the production of deoxynivalenol (DON), the major type B trichothecene mycotoxin. DON has been described as a virulence factor enabling efficient colonization of spikes by the fungus in wheat, but its precise role during the infection process is still elusive. Brachypodium distachyon (Bd) is a model cereal species which has been shown to be susceptible to FHB. Here, a functional genomics approach was performed in order to characterize the responses of Bd to Fg infection using a global transcriptional and metabolomic profiling of B. distachyon plants infected by two strains of F. graminearum: a wild-type strain producing DON (FgDON+) and a mutant strain impaired in the production of the mycotoxin (FgDON-).

Results

Histological analysis of the interaction of the Bd21 ecotype with both Fg strains showed extensive fungal tissue colonization with the FgDON+ strain while the florets infected with the FgDON- strain exhibited a reduced hyphal extension and cell death on palea and lemma tissues. Fungal biomass was reduced in spikes inoculated with the FgDON- strain as compared with the wild-type strain. The transcriptional analysis showed that jasmonate and ethylene-signalling pathways are induced upon infection, together with genes encoding putative detoxification and transport proteins, antioxidant functions as well as secondary metabolite pathways. In particular, our metabolite profiling analysis showed that tryptophan-derived metabolites, tryptamine, serotonin, coumaroyl-serotonin and feruloyl-serotonin, are more induced upon infection by the FgDON+ strain than by the FgDON- strain. Serotonin was shown to exhibit a slight direct antimicrobial effect against Fg.

Conclusion

Our results show that Bd exhibits defense hallmarks similar to those already identified in cereal crops. While the fungus uses DON as a virulence factor, the host plant preferentially induces detoxification and the phenylpropanoid and phenolamide pathways as resistance mechanisms. Together with its amenability in laboratory conditions, this makes Bd a very good model to study cereal resistance mechanisms towards the major disease FHB.

【 授权许可】

   
2014 Pasquet et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150630073149142.pdf 1377KB PDF download
Figure 5. 84KB Image download
Figure 4. 61KB Image download
Figure 3. 98KB Image download
Figure 2. 121KB Image download
Figure 1. 85KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Kazan K, Gardiner DM, Manners JM: On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance. Mol Plant Pathol 2012, 13:399-413.
  • [2]Rocha O, Ansari K, Doohan FM: Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit Contam 2005, 22:369-378.
  • [3]Yazar S, Omurtag GZ: Fumonisins, trichothecenes and zearalenone in cereals. Int J Mol Sci 2008, 9:2062-2090.
  • [4]Opanowicz M, Vain P, Draper J, Parker D, Doonan JH: Brachypodium distachyon: making hay with a wild grass. Trends in Plant Sci 2008, 13:1360-85.
  • [5]Mur LAJ, Allainguillaume J, Catalan P, Hasterok R, Jenkins G, Lesniewska K, Thomas I, Vogel J: Tansley review: exploiting the brachypodium toolbox in cereal and grass research. New Phytol 2011, 191:334-347.
  • [6]Peraldi A, Beccari G, Steed A, Nicholson P: Brachypodium distachyon: a new pathosystem to study Fusarium head blight and other Fusarium diseases of wheat. BMC Plant Pathol 2011, 11:100-113.
  • [7]Buerstmayr H, Ban T, Anderson JA: QTL mapping and marker-assisted selection forFusarium head blight resistance in wheat: a review. Plant Breed 2009, 128:1-26.
  • [8]Lemmens M, Scholz U, Berthiller F, Dall’Asta C, Koutnik A, Schuhmacher R, Adam G, Buerstmayr H, Mesterhazy A, Krska R, Ruckenbauer P: The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Mol Plant Microbe Interact 2005, 18:1318-1324.
  • [9]Walter S, Brennan JM, Arunachalam C, Ansari KI, Hu X, Khan MR, Trognitz F, Trognitz B, Leonard G, Egan D, Doohan FM: Components of the gene network associated with genotype-dependent response of wheat to the Fusarium mycotoxin deoxynivalenol. Funct Integr Genomics 2008, 8:421-427.
  • [10]Coleman JOD, Blake-Kalff MMA, Davies TGE: Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci 1997, 2:144-151.
  • [11]Boddu J, Cho S, Muehlbauer GJ: Transcriptome analysis of trichothecene-induced gene expression in barley. Mol Plant Microbe Interact 2007, 20:1364-1375.
  • [12]Boddu J, Cho S, Kruger WM, Muehlbauer GJ: Transcriptome analysis of the barley-Fusarium graminearum interaction. Mol Plant Microbe Interact 2006, 19:407-17.
  • [13]Gardiner SA, Boddu J, Berthiller F, Hametner C, Stupar RM, Adam G, Muehlbauer GJ: Transcriptome analysis of the barley-deoxynivalenol interaction: evidence for a role of glutathione in deoxynivalenon detoxification. Mol Plant Microbe Interact 2010, 23:962-976.
  • [14]Jia H, Cho S, Muehlbauer GJ: Transcriptome analysis of a wheat near-isogenic line pair carrying Fusarium head blight-resistant and –susceptible alleles. Mol Plant Microbe Interact 2009, 22:1366-1378.
  • [15]Gottwald S, Samans B, Lück S, Friedt W: Jasmonate and ethylene dependent defence gene expression and suppression of fungal virulence factors: two essential mechanisms of Fusarium head blight resistance in wheat? BMC Genomics 2012, 13:369-400.
  • [16]Bollina V, Kushalappa AC, Choo TM, Dion Y, Rioux S: Identification of metabolites related to mechanisms of resistance in barley against Fusarium graminearum, based on mass spectrometry. Plant Mol Biol 2011, 77:355-370.
  • [17]Kumaraswamy KG, Kushalappa AC, Choo TM, Dion Y, Rioux S: Mass spectrometry based metabolomics to identify potential biomarkers for resistance in barley against Fusarium head blight (Fusarium graminearum). J Chem Ecol 2011, 11:769-782.
  • [18]Cuzik A, Urban M, Hammond-Kosack K: Fusarium graminearum gene deletion mutant map1 and Fg DON- reveal similarities and differences in the pathogenicity requirements to cause disease on Arabidopsis and wheat floral tissue. New Phytol 2008, 177:990-1000.
  • [19]Bai G, Shaner G: Variation in Fusarium graminearum and cultivar resistance to wheat scab. Plant Dis 1996, 80:975-979.
  • [20]Cao H, Li X, Dong X: Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci U S A 1998, 95:6531-6536.
  • [21]Mudge AM, Dill-Macky R, Dong Y, Gardiner DM, White RG, Manners JM: A role for the mycotoxin deoxynivalenol in stem colonisation during crown rot disease of wheat caused by Fusarium graminearum and Fusarium pseudograminearum. Physiol Mol Plant Pathol 2006, 69:73-85.
  • [22]Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on bias and variance. Bioinformatics 2003, 19:185-193.
  • [23]Ge Y, Dudoit S, Speed TP: Resampling-based multiple testing for microarray data analysis. TEST 2003, 12:1-44.
  • [24]Gagnot S, Tamby JP, Martin-Magniette ML, Bitton F, Taconnat L, Balzergue S, Aubourg S, Renou JP, Lecharny A, Brunaud V: CATdb: a public access to Arabidopsis transcriptome data from the URGV CATMA platform. Nucleic Acids Res 2008, 36:D986-D990.
  • [25]Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Edgar R: NCBI GEO: mining tens of millions of expression profiles–database and tools update. Nucleic Acids Res 2007, 35:D760-D765.
  • [26]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [27]Hong SH, Seo PJ, Yang MS, Xiang F, Park CM: Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR. BMC Plant Biology 2008, 8:112.
  • [28]Simon C, Langlois-Meurinne M, Bellvert F, Garmier M, Didierlaurent L, Massoud K, Chaouch S, Marie A, Bodo B, Kauffmann S, Noctor G, Saindrenan P: The differential spatial distribution of secondary metabolites in Arabidopsis leaves reacting hypersensitively to Pseudomonas syringae pv. tomato is dependent on the oxidative burst. J Exp Bot 2010, 61:3355-3370.
  • [29]Hagemeier J, Schneider B, Oldham NJ, Hahlbrock K: Accumulation of soluble and wall-bound indolic metabolites in Arabidopsis thaliana leaves infected with virulent or avirulent Pseudomonas syringae pathovar tomato strains. Proc Natl Acad Sci U S A 2001, 98:753-758.
  • [30]Goswami RS, Kistler HC: Pathogenicity and in planta mycotoxin acculmulation among members of the Fusarium graminearum species complex on wheat and rice. Phytopathol 2005, 95:1397-1404.
  • [31]Jansen C, von Wettstein D, Schäfer W, Kogel KH, Felk A, Maier FJ: Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase disrupted Fusarium graminearum. Proc Natl Acad Sci U S A 2005, 46:16892-16897.
  • [32]Maier FJ, Miedaner T, Hadeler B, Felk A, Salomon S, Lemmens M, Kassner H, Schäfer W: Involvement of trichothecenes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Fg DON-) gene in three field isolates of different chemotype and virulence. Mol Plant Pathol 2006, 7:449-461.
  • [33]Bieri S, Mauch S, Shen QH, Peart J, Devoto A, Casais C, Ceron F, Schulze S, Steinbiss HH, Shirasu K, Schulze-Lefert P: RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell 2004, 16:3480-3495.
  • [34]Gfeller A, Dubugnon L, Lietchi R, Farmer EE: Jasmonate biochemical pathway. Sci Signal 2010, 3:cm3.
  • [35]Kazan K, Manners JM: Jasmonate signaling: towards an integrated view. Plant Physiol 2008, 146:1459-1468.
  • [36]Dunwell JM, Purvis A, Khuri S: Cupins: the most diverse protein superfamily? Phytochemistry 2004, 65:7-17.
  • [37]Heyno E, Alkan N, Fluhr R: A dual role for plant quinone reductases in host-fungus interaction. Physiol Plant 2013, 149:340-353.
  • [38]Ishihara A, Hashimoto Y, Tanaka C, Dubouzet JG, Nakao T, Matsuda F, Nishioka T, Miyagawa H, Wakasa K: The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production. Plant J 2008, 54:481-495.
  • [39]Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L, Wong HL, Kawasaki T, Shimamoto K: Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem 2010, 285:11308-11313.
  • [40]Schweiger W, Pasquet JC, Nussbaumer T, Kovalski MP, Wiesenberger G, Macadré C, Ametz T, Berthiller F, Lemmens M, Saindrenan P, Mewes HW, Mayer KFX, Dufresne M, Adam G: Functional characterization of two clusters of Brachypodium distachyon UDP-glycosyltransferases encoding putative deoxynivalenol detoxification genes. Mol Plant Microbe Interact 2013, 26:781-792.
  • [41]Yamauchi Y, Hasegawa A, Taninaka A, Mizutani M, Sugimoto Y: NADPH-dependent reductases involved in the detoxification of reactive carbonyls in plants. J Biol Chem 2011, 286:6999-7009.
  • [42]Ishihara A, Nakao T, Mashimo Y, Murai M, Ichimaru N, Tanaka C, Nakajima H, Wakasa K, Miyagawa H: Probing the role of tryptophan- derived secondary metabolism in defense responses against Bipolaris oryzae infection in rice leaves by a suicide substrate of tryptophan decarboxylase. Phytochemistry 2011, 72:7-13.
  • [43]Draper J, Mur LAJ, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, Routledge APM: Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Phys 2001, 127:1539-1555.
  • [44]Hong SY, Park JH, Cho SH, Yang MS, Park CM: Phenological growth stages of Brachypodium distachyon: codification and description. Weed Res 2011, 51:612-620.
  • [45]Vogel J, Hill T: High-efficiency agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Rep 2008, 27:471-478.
  • [46]Vain P, Worland B, Thole V, McKenzie N, Alves SC, Opanowicz M, Fish LJ, Bevan MW, Snape JW: Agrobacterium-mediated transformation of the temperate grass Brachypodium distachyon (genotype Bd21) for T-DNA insertional mutagenesis. Plant Biotechnol J 2008, 6:236-245.
  • [47]Pacurar DI, Thordal-Christensen H, Nielsen KK, Lenk I: A high-throughput agrobacterium-mediated transformation system for the grass model species Brachypodium distachyon L. Transgenic Res 2008, 17:965-975.
  • [48]Alves SC, Worland B, Thole V, Snape JW, Bevan MW, Vain P: A protocol for agrobacterium-mediated transformation of Brachypodium distachyon community standard line Bd21. Nat Protoc 2009, 4:638-649.
  • [49]Thole V, Alves SC, Worland B, Bevan MW, Vain P: A protocol for efficiently retrieving and characterizing flanking sequence tags (FSTs) in Brachypodium distachyon T-DNA insertional mutants. Nat Protoc 2009, 45:650-661.
  • [50]Thole V, Peraldi A, Worland B, Nicholson P, Doonan JH, Vain P: T-DNA mutagenesis in Brachypodium distachyon. J Exp Bot 2012, 63:567-576.
  • [51]Bragg JN, Wu J, Gordon SP, Guttman ME, Thilmony R, Lazo GR, Gu YQ, Vogel JP: Generation and characterization of the Western regional research center brachypodium T-DNA insertional mutant collection. PLoS One 2012, 7:e41916.
  • [52]Dalmais M, Antelme S, Ho-Yue-Kuang S, Wang Y, Darracq O, D'Yvoire MB, Cézard L, Légée F, Blondet E, Oria N, Troadec C, Brunaud V, Jouanin L, Höfte H, Bendahmane A, Lapierre C, Sibout R: A TILLING platform for functional genomics in Brachypodium distachyon. PLoS One 2013, 8:e65503.
  • [53]Initiative TIB: Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 2010, 463:763-768.
  • [54]Parker D, Beckmann M, Enot DP, Overy DP, Rios ZC, Gilbert M, Talbot N, Draper J: Rice blast infection of Brachypodium distachyon as a model system to study dynamic host/pathogen interactions. Nat Protoc 2008, 3:435-445.
  • [55]Liu Z, Ellwood SR, Oliver RP, Friesen TL: Pyrenophora teres: profile of an increasingly damaging barley pathogen. Mol Plant Pathol 2011, 12:1-19.
  • [56]Figueroa M, Alderman S, Garvin DF, Pfender WF: Infection of Brachypodium distachyon by formae speciales of Puccinia graminis: early infection events and host-pathogen incompatibility. PLoS One 2013, 8:e56857.
  • [57]Mandadi KK, Scholthof KB: Characterization of a viral synergism in the monocot Brachypodium distachyon reveals distinctly altered host molecular processes associated with disease. Plant Physiol 2012, 160:1432-1452.
  • [58]Lucas SJ, Baştaş K, Budak H: Exploring the interaction between small RNAs and R genes during Brachypodium response to Fusarium culmorum infection. Gene. 2013. doi:10.1016/j.gene.2013.12.025
  • [59]Goswami RS, Kistler HC: Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 2004, 5:515-525.
  • [60]Foroud NA, Eudes F: Trichothecenes in cereal grains. Int J Mol Sci 2009, 10:147-173.
  • [61]Bai G, Shaner G: Management and resistance in wheat and barley to fusarium head blight. Annu Rev Phytopathol 2004, 42:135-161.
  • [62]Ishiga Y, Ishiga T, Uppalapati SR, Mysore KS: Jasmonate ZIM-domain (JAZ) protein regulates host and nonhost pathogen-induced cell death in tomato and Nicotiana benthamiana. PLoS One 2013, 8:e75728.
  • [63]Taki N, Sasaki-Sekimoto Y, Obayashi T, Kikuta A, Kobayashi K, Ainai T, Yagi K, Sakurai N, Suzuki H, Masuda T, Takamiya K, Shibata D, Kobayashi Y, Ohta H: 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiol 2005, 139:1268-1283.
  • [64]Robert-Seilaniantz A, Grant M, Jones JD: Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 2011, 49:317-343.
  • [65]Brown NA, Urban M, Van de Meene AML, Hammond-Kosack KE: The infection biology of Fusarium graminearum: defining the pathways of spikelet to spikelet colonization in wheat ears. Fungal Biol 2010, 114:555-571.
  • [66]Ding L, Xu H, Yi H, Yang L, Kong Z, Zhang L, Xue S, Jia H, Ma Z: Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. Plos One 2011, 6:e19008.
  • [67]Desmond OJ, Manners JM, Stephens AE, Maclean DJ, Schenk PM, Gardiner DM, Munn AL, Kazan K: The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defence responses in wheat. Mol Plant Pathol 2008, 9:435-445.
  • [68]Boutigny AL, Richard-Forget F, Barreau C: Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes. Eur J Plant Pathol 2008, 121:411-423.
  • [69]Schweiger W, Boddu J, Shin S, Poppenberger B, Berthiller F, Lemmens M, Muehlbauer GJ, Adam G: Validation of a candidate deoxynivalenol-inactivating UDP-glucosyltransferase from barley by heterologous expression in yeast. Mol Plant-Microbe Interact 2010, 23:977-986.
  • [70]Kluger B, Bueschl C, Lemmens M, Berthiller F, Häubl G, Jaunecker G, Adam G, Krska R, Schuhmacher R: Stable isotopic labelling-assisted untargeted metabolic profiling reveals novel conjugates of the mycotoxin deoxynivalenol in wheat. Anal Bioanal Chem 2013, 405:5031-5036.
  • [71]Bollina V, Kumaraswamy GK, Kushalappa AC, Choo TM, Dion Y, Rioux S, Faubert D, Hamzehzarghani H: Mass-spectrometry-based metabolomics application to identify quantitative resistance-related metabolites in barley agains Fusarium head blight. Mol Plant Pathol 2010, 11:769-782.
  • [72]Kumaraswamy GK, Bollina V, Kushalappa AC, Choo TM, Dion Y, Rioux S, Mamer O, Faubert D: Metabolomics technology to phenotype resistance in barley against Gibberella zeae. Eur J Plant Pathol 2011, 130:29-43.
  • [73]Allwood JW, Ellis DI, Heald JK, Goodacre R, Mur LA: Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol phospholipids are major discriminatory non-polar metabolites in responses by Brachypodium distachyon to challenge by Magnaporthe grisea. Plant J 2006, 46:351-368.
  • [74]Parker D, Beckmann M, Zubair H, Enot DP, Caracuel-Rios Z, Overy DP, Snowdon S, Talbot NJ, Draper J: Metabolomic analysis reveals a common pattern of metabolic re-programming during invasion of three host plant species by Magnaporthe grisea. Plant J 2009, 59:723-737.
  • [75]Du Fall LA, Solomon PS: Role of cereal secondary metabolites involved in mediating the outcome of plant-pathogen interactions. Metabolites 2011, 1:64-78.
  • [76]Niemeyer HM: Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defence chemicals in the gramineae. Phytochemistry 1988, 27:3349-3358.
  • [77]Dutartre L, Hilliou F, Feyereisen R: Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: gene duplications and origin of the Bx cluster. BMC Evol Biol 2012, 12:64.
  • [78]Kang K, Kim YS, Park S, Back K: Senescence-induced serotonin biosynthesis and its role in delaying senescence in rice leaves. Plant Phys 2009, 150:1380-1393.
  • [79]Du Fall LA, Solomon PS: The necrotrophic effector SnToxA induces the synthesis of a novel phytoalexin in wheat. New Phytol 2013, 200:185-200.
  文献评价指标  
  下载次数:49次 浏览次数:14次