期刊论文详细信息
BMC Neuroscience
Mitochondrial oxygen consumption deficits in skeletal muscle isolated from an Alzheimer’s disease-relevant murine model
Paul S Fishman1  Guo Li Shi3  Natalie Dugger5  Ji H Park5  Christopher W Ward3  Espen E Spangenburg2  Anna E Schlappal4  Kathryn C Jackson2  Rosemary A Schuh1 
[1] Department of Neurology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA;University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland 20742, USA;University of Maryland, BioMet and School of Nursing, Baltimore, Maryland 21201, USA;Present address: Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA;Research Service, VAMHCS, 10 North Greene Street, 3C-125, Baltimore, Maryland 21201, USA
关键词: Muscle;    Neurodegeneration;    Amyloid plaque;    Mitochondria;    Alzheimer’s disease;   
Others  :  1092458
DOI  :  10.1186/1471-2202-15-24
 received in 2014-01-08, accepted in 2014-02-04,  发布年份 2014
PDF
【 摘 要 】

Background

Age is considered a primary risk factor for neurodegenerative diseases including Alzheimer’s disease (AD). It is also now well understood that mitochondrial function declines with age. Mitochondrial deficits have been previously assessed in brain from both human autopsy tissue and disease-relevant transgenic mice. Recently it has been recognized that abnormalities of muscle may be an intrinsic aspect of AD and might contribute to the pathophysiology. However, deficits in mitochondrial function have yet to be clearly assessed in tissues outside the central nervous system (CNS). In the present study, we utilized a well-characterized AD-relevant transgenic mouse strain to assess mitochondrial respiratory deficits in both brain and muscle. In addition to mitochondrial function, we assessed levels of transgene-derived amyloid precursor protein (APP) in homogenates isolated from brain and muscle of these AD-relevant animals.

Results

We now demonstrate that skeletal muscles isolated from these animals have differential levels of mutant full-length APP depending on muscle type. Additionally, isolated muscle fibers from young transgenic mice (3 months) have significantly decreased maximal mitochondrial oxygen consumption capacity compared to non-transgenic, age-matched mice, with similar deficits to those previously described in brain.

Conclusions

This is the first study to directly examine mitochondrial function in skeletal muscle from an AD-relevant transgenic murine model. As with brain, these deficits in muscle are an early event, occurring prior to appearance of amyloid plaques.

【 授权许可】

   
2014 Schuh et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128184514918.pdf 1769KB PDF download
Figure 6. 50KB Image download
Figure 5. 52KB Image download
Figure 4. 43KB Image download
Figure 3. 19KB Image download
Figure 2. 42KB Image download
Figure 1. 36KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Burns JM, Johnson DK, Watts A, Swerdlow RH, Brooks WM: Reduced lean mass in early Alzheimer disease and its association with brain atrophy. Arch Neurol 2010, 67(4):428-433.
  • [2]Boyle PA, Buchman AS, Wilson RS, Leurgans SE, Bennett DA: Association of muscle strength with the risk of Alzheimer disease and the rate of cognitive decline in community-dwelling older persons. Arch Neurol 2009, 66(11):1339-1344.
  • [3]Lin MT, Beal MF: Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006, 443(7113):787-795.
  • [4]Blass JP: Brain metabolism and brain disease: is metabolic deficiency the proximate cause of Alzheimer dementia? J Neurosci Res 2001, 66(5):851-856.
  • [5]Mattson M: Pathways towards and away from Alzheimer’s disease. Nature 2004, 430(7000):631-639.
  • [6]Chandrasekaran K, Giordano T, Brady TR, Stoll J, Martin LJ, Rapaport SI: Impairment in mitochondrial cytochrome oxidase gene expression in Alzheimer disease. Brain Res Mol Brain Res 1994, 24(1–4):336-340.
  • [7]Ko L, Sheu KFR, Thaler HT, Markesbery WR, Blass JP: Selective loss of KGDHC-enriched neurons in Alzheimer temporal cortex: does mitochondrial variation contribute to selective variability? J Mol Neurosci 2001, 17(3):361-369.
  • [8]Frackowiak J, Potempska A, LeVine H, Haske T, Dickson D, Mazur-Kolecka B: Extracellular deposits of A beta produced in cultures of Alzheimer disease brain vascular smooth muscle cells. J Neuropathol Exp Neurol 2005, 64(1):82-90.
  • [9]Arai H, Lee VM, Messinger ML, Greenberg BD, Lowery DE, Trojanowski JQ: Expression patterns of beta-amyloid precursor protein (beta-APP) in neural and nonneural human tissues from Alzheimer's disease and control subjects. Ann Neurol 1991, 30(5):686-693.
  • [10]Kuo YM, Kokjohn TA, Watson MD, Woods AS, Cotter RJ, Sue LI, Kalback WM, Emmerling MR, Beach TG, Roher AE: Elevated abeta42 in skeletal muscle of Alzheimer disease patients suggests peripheral alterations of AbetaPP metabolism. Am J Pathol 2000, 156(3):797-805.
  • [11]Trimmer PA, Keeney PM, Borland MK, Simon FA, Almeida J, Swerdlow RH, Parks JP, Parker WD Jr, Bennett JP Jr, Molina JA, de Bustos F, Jiménez-Jiménez FJ, Benito-León J, Gasalla T: Mitochondrial abnormalities in cybrid cell models of sporadic Alzheimer's disease worsen with passage in culture. Neurobiol Dis 2004, 15(1):29-39.
  • [12]Ortí-Pareja M, Vela L, Bermejo F, Martín MA, Campos Y, Arenas J: Respiratory chain enzyme activities in isolated mitochondria of lymphocytes from patients with Alzheimer's disease. Neurology 1997, 48(3):636-638.
  • [13]Calkins MJ, Manczak M, Mao P, Shirendeb U, Reddy PH: Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Human Mol Gen 2011, 20(23):4515-4529.
  • [14]Yao J, Chen S, Mao Z, Cadenas E, Diaz Brinton R: 2-Deoxy-D-glucose treatment induces ketogenesis, sustains mitochondrial function, and reduces pathology in a female mouse model of Alzheimer’s disease. PLoS ONE 2011, 6(7):e21788.
  • [15]Walls KC, Coskun P, Gallegos-Perez JL, Zadourian N, Freude K, Rasool S, Blurton-Jones M, Green KN, LaFerla FM: Swedish Alzheimer mutation induces mitochondrial dysfunction mediated by HSP60 mislocalization of amyloid precursor protein (APP) and beta-amyloid. J Biol Chem 2012, 287(36):30317-30327.
  • [16]Hauptmann S, Scherping I, Dröse S, Brandt U, Schulz KL, Jendrach M, Leuner K, Eckert A, Müller WE: Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging 2009, 30(10):1574-1586.
  • [17]Yao J, Irwin RW, Zhao L, Nilsen J, Hamilton RT, Diaz Brinton R: Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. PNAS 2009, 106(34):14670-14675.
  • [18]Yao J, Hamilton RT, Cadenas E, Diaz Brinton R: Decline in mitochondrial bioenergetics and shift to ketogenic profile in brain during reproductive senescence. Biochim Biophys Acta 2010, 1800(10):1121-1126.
  • [19]Devi L, Ohno M: Mitochondrial dysfunction and accumulation of the β-secretase-cleaved C-terminal fragment of APP in Alzheimer's disease transgenic mice. Neurobiol Dis 2012, 45(1):417-424.
  • [20]Beckett TL, Studzinski CM, Keller JN, Murphy MP, Niedowicz DM: A ketogenic diet improves motor performance but does not affect β-amyloid levels in a mouse model of Alzheimer’s disease. Brain Res 2013, 1505:61-67.
  • [21]Schuh RA, Jackson KC, Khairallah RJ, Ward CW, Spangenburg EE: Measuring mitochondrial respiration in intact single muscle fibers. Am J Physiol Regul Integr Comp Physiol 2012, 302(6):R712-9. Epub 2011 Dec 7
  • [22]Machova E, Rudajev V, Smyckova H, Koivisto H, Tanila H, Dolezal V: Functional cholinergic damage develops with amyloid accumulation in young adult APPswe/PS1dE9 transgenic mice. Neurobiol Dis 2010, 38:27-35.
  • [23]Burkholder TJ, Fingado B, Baron S, Lieber RL: Relationship between muscle fiber types and sizes and muscle architectural properties in the mouse hindlimb. J Morphol 1994, 221(2):177-190.
  • [24]Caspersen C, Wang N, Yao J, Sosunov A, Chen X, Lustbader JW, Xu HW, Stem D, McKhann G, Yan SD: Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J 2005, 19(14):2040-2041.
  • [25]Du H, Guo L, Yan S, Sosunov AA, McKhann GM, Yan SS: Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. PNAS 2010, 107(43):18670-18675.
  • [26]Eckert A, Schindowski K, Leutner S, Luckhaus C, Touchet N, Czech C, Muller WE: Alzheimer’s disease-like alterations in peripheral cells from presenilin-1 transgenic mice. Neurobiol Dis 2001, 8:331-342.
  • [27]Schuessel K, Fre C, Jourdan C, Keil U, Weber CC, Muller-Spahn F, Muller WE, Eckert A: Aging sensitizes toward ROS formation and lipid peroxidation in PS1M146L transgenic mice. Free Rad Biol Med 2006, 40:850-862.
  • [28]Behbahani H, Shabalina IG, Wiehager B, Concha H, Hultenby K, Petrovic N, Nedergaard J, Winblad B, Cowburn RF, Ankarcrona M: Differential role of Presenilin-1 and −2 on mitochondrial membrane potential and oxygen consumption in mouse embryonic fibroblasts. J Neurosci Res 2006, 84(4):891-902.
  • [29]Swerdlow RH, Burns JM, Khan SM: The Alzheimer's disease mitochondrial cascade hypothesis. J Alzheimers Dis 2010, 20(Suppl 2):S265-S279.
  • [30]Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK: Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 2006, 26(35):9057-9068.
  • [31]Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue L, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, Wu, H: ABAD directly links Aβ to mitochondrial toxicity in Alzheimer’s disease. Science 2004, 304(5669):448-452.
  • [32]Askanas V, Engel WK: Inclusion-body myositis: muscle-fiber molecular pathology and possible pathogenic significance of its similarity to Alzheimer's and Parkinson's disease brains. Acta Neuropathol 2008, 116(6):583-595.
  • [33]Moslemi AR, Lindberg C, Oldfors A: Analysis of multiple mitochondrial DNA deletions in inclusion body myositis. Hum Mutat 1997, 10(5):381-386.
  • [34]Horvath R, Fu K, Johns T, Genge A, Karpati G, Shoubridge EA: Characterization of the mitochondrial DNA abnormalities in the skeletal muscle of patients with inclusion body myositis. J Neuropathol Exp Neurol 1998, 57(5):396-403.
  • [35]Oldfors A, Moslemi AR, Jonasson L, Ohlsson M, Kollberg G, Lindberg C: Mitochondrial abnormalities in inclusion body myositis. Neurology 2006, 66(2 Suppl 1):S49-S55.
  • [36]Askanas V, McFerrin J, Baque S, Alvarez RB, Sarkozi E, Engel WK: Transfer of β-amyloid precursor protein gene using adenovirus vector causes mitochondrial abnormalities in cultured normal human muscle. PNAS 1996, 93:1314-1319.
  • [37]Sugarman MC, Yamasaki TR, Oddo S, Echegoyen JC, Murphy MP, Golde TE, Jannatipour M, Leissring MA, LaFerla FM: Inclusion body myositis-like phenotype induced by transgenic overexpression of βAPP in skeletal muscle. PNAS 2002, 99(9):6334-6339.
  • [38]Boncompagni S, Moussa CE, Levy E, Pezone MJ, Lopez JR, Protasi F, Shtifman A: Mitochondrial dysfunction in skeletal muscle of amyloid precursor protein (APP) overexpressing mice. J Biol Chem 2012, 287(24):20534-20544.
  • [39]Humpel C: Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol 2011, 29(1):26-32.
  • [40]Sims NR: Rapid isolation of metabolically active mitochondria from rat brain and subregions using percoll density gradient centrifugation. J Neurochem 1990, 55:698-707.
  • [41]Schuh RA, Kristian T, Gupta RK, Flaws JA, Fiskum G: Methoxychlor inhibits brain mitochondrial respiration and increases hydrogen peroxide production and CREB phosphorylation. Tox Sci 2005, 88(2):495-504.
  • [42]Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin Phenol reagent. J Biol Chem 1951, 193(1):265-275.
  • [43]Chandrasekaran K, Hazelton JL, Wang Y, Fiskum G, Kristian T: Neuron-specific conditional expression of a mitochondrially targeted fluorescent protein in mice. J Neurosci 2006, 26(51):13123-13127.
  • [44]Trichas G, Begbie J, Srinivas S: Use of the viral 2A peptide for bicistronic expression in transgenic mice. BMC Biol 2008, 6:40. BioMed Central Full Text
  • [45]Jankowsky JL, Slunt HH, Ratovitski T, Jenkins NA, Copeland NG, Borchelt DR: Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol Eng 2001, 17(6):157-165.
  • [46]Rogers GW, Brand M, Petrosyan S, Ashok D, Elorza AA, Ferrick DA, Murphy AN: High throughput microplate respirometry measurements using minimal quantities of isolated mitochondria. PLoS One 2011, 6(7):e21746.
  • [47]Michaelson LP, Shi G, Ward CW, Rodney GG: Mitochondrial redox potential during contraction in single intact muscle fibers. Muscle Nerve 2010, 42(4):522-529.
  文献评价指标  
  下载次数:42次 浏览次数:14次