期刊论文详细信息
BMC Developmental Biology
Neural stem and progenitor cell fate transition requires regulation of Musashi1 function
Melanie C MacNicol2  Horace J Spencer4  Linda L Hardy1  Angus M MacNicol3 
[1] Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham, Slot 814, Little Rock 72205, AR, USA;Center for Translational Neuroscience, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock 72205, AR, USA;Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock 72205, AR, USA;Department of Biostatistics, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock 72205, AR, USA
关键词: Cell cycle;    mRNA translation;    Survival;    Differentiation;    Stem cell;    Musashi;   
Others  :  1161035
DOI  :  10.1186/s12861-015-0064-y
 received in 2014-09-15, accepted in 2015-02-26,  发布年份 2015
PDF
【 摘 要 】

Background

There is increasing evidence of a pivotal role for regulated mRNA translation in control of developmental cell fate transitions. Physiological and pathological stem and progenitor cell self-renewal is maintained by the mRNA-binding protein, Musashi1 through repression of translation of key mRNAs encoding cell cycle inhibitory proteins. The mechanism by which Musashi1 function is modified to allow translation of these target mRNAs under conditions that require inhibition of cell cycle progression, is unknown.

Results

In this study, we demonstrate that differentiation of primary embryonic rat neural stem/progenitor cells (NSPCs) or human neuroblastoma SH-SY5Y cells results in the rapid phosphorylation of Musashi1 on the evolutionarily conserved site serine 337 (S337). Phosphorylation of this site has been shown to be required for cell cycle control during the maturation of Xenopus oocytes. S337 phosphorylation in mammalian NSPCs and human SH-SY5Y cells correlates with the de-repression and translation of a Musashi reporter mRNA and with accumulation of protein from the endogenous Musashi target mRNA, p21WAF1/CIP1. Inhibition of Musashi regulatory phosphorylation, through expression of a phospho-inhibitory mutant Musashi1 S337A or over-expression of the wild-type Musashi, blocked differentiation of both NSPCs and SH-SY5Y cells. Musashi1 was similarly phosphorylated in NSPCs and SH-SY5Y cells under conditions of nutrient deprivation-induced cell cycle arrest. Expression of the Musashi1 S337A mutant protein attenuated nutrient deprivation-induced NSPC and SH-SY5Y cell death.

Conclusions

Our data suggest that in response to environmental cues that oppose cell cycle progression, regulation of Musashi function is required to promote target mRNA translation and cell fate transition. Forced modulation of Musashi1 function may present a novel therapeutic strategy to oppose pathological stem cell self-renewal.

【 授权许可】

   
2015 MacNicol et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150412011902930.pdf 768KB PDF download
Figure 4. 26KB Image download
Figure 3. 23KB Image download
Figure 2. 12KB Image download
Figure 1. 22KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Young RA: Control of the embryonic stem cell state. Cell 2011, 144(6):940-54.
  • [2]Orkin SH, Wang J, Kim J, Chu J, Rao S, Theunissen TW, et al.: The transcriptional network controlling pluripotency in ES cells. Cold Spring Harb Symp Quant Biol 2008, 73:195-202.
  • [3]Torres-Padilla ME, Chambers I: Transcription factor heterogeneity in pluripotent stem cells: a stochastic advantage. Development 2014, 141(11):2173-81.
  • [4]Cahan P, Daley GQ: Origins and implications of pluripotent stem cell variability and heterogeneity. Nat Rev Mol Cell Biol 2013, 14(6):357-68.
  • [5]Sarkar A, Hochedlinger K: The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 2013, 12(1):15-30.
  • [6]de Andres-Aguayo L, Varas F, Graf T: Musashi 2 in hematopoiesis. Curr Opin Hematol 2012, 19(4):268-72.
  • [7]MacNicol AM, Wilczynska A, MacNicol MC: Function and regulation of the mammalian Musashi mRNA translational regulator. Biochem Soc Trans 2008, 36(Pt 3):528-30.
  • [8]Okano H, Kawahara H, Toriya M, Nakao K, Shibata S, Imai T: Function of RNA-binding protein Musashi-1 in stem cells. Exp Cell Res 2005, 306(2):349-56.
  • [9]Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, et al.: Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 2003, 100(25):15178-83.
  • [10]Ito T, Kwon HY, Zimdahl B, Congdon KL, Blum J, Lento WE, et al.: Regulation of myeloid leukaemia by the cell-fate determinant Musashi. Nature 2010, 466(7307):765-8.
  • [11]Kanemura Y, Mori K, Sakakibara S, Fujikawa H, Hayashi H, Nakano A, et al.: Musashi1, an evolutionarily conserved neural RNA-binding protein, is a versatile marker of human glioma cells in determining their cellular origin, malignancy, and proliferative activity. Differentiation 2001, 68(2–3):141-52.
  • [12]Kharas MG, Lengner CJ, Al-Shahrour F, Bullinger L, Ball B, Zaidi S, et al.: Musashi-2 regulates normal hematopoiesis and promotes aggressive myeloid leukemia. Nat Med 2010, 16(8):903-8.
  • [13]Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG, et al.: Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 2011, 17(7):867-74.
  • [14]Schiapparelli P, Enguita-German M, Balbuena J, Rey JA, Lazcoz P, Castresana JS: Analysis of stemness gene expression and CD133 abnormal methylation in neuroblastoma cell lines. Oncol Rep 2010, 24(5):1355-62.
  • [15]Sureban SM, May R, George RJ, Dieckgraefe BK, McLeod HL, Ramalingam S, et al.: Knockdown of RNA binding protein musashi-1 leads to tumor regression in vivo. Gastroenterology 2008, 134(5):1448-58.
  • [16]Toda M, Iizuka Y, Yu W, Imai T, Ikeda E, Yoshida K, et al.: Expression of the neural RNA-binding protein Musashi1 in human gliomas. Glia 2001, 34(1):1-7.
  • [17]Wang XY, Penalva LO, Yuan H, Linnoila RI, Lu J, Okano H, et al.: Musashi1 regulates breast tumor cell proliferation and is a prognostic indicator of poor survival. Mol Cancer 2010, 9:221. BioMed Central Full Text
  • [18]Wang XY, Yu H, Linnoila RI, Li L, Li D, Mo B, et al.: Musashi1 as a potential therapeutic target and diagnostic marker for lung cancer. Oncotarget 2013, 4(5):739-50.
  • [19]Yokota N, Mainprize TG, Taylor MD, Kohata T, Loreto M, Ueda S, et al.: Identification of differentially expressed and developmentally regulated genes in medulloblastoma using suppression subtraction hybridization. Oncogene 2004, 23(19):3444-53.
  • [20]Battelli C, Nikopoulos GN, Mitchell JG, Verdi JM: The RNA-binding protein Musashi-1 regulates neural development through the translational repression of p21(WAF-1). Mol Cell Neurosci 2006, 31:85-96.
  • [21]Horisawa K, Imai T, Okano H, Yanagawa H: 3′-Untranslated region of doublecortin mRNA is a binding target of the Musashi1 RNA-binding protein. FEBS Lett 2009, 583(14):2429-34.
  • [22]Imai T, Tokunaga A, Yoshida T, Hashimoto M, Mikoshiba K, Weinmaster G, et al.: The neural RNA-binding protein Musashi1 translationally regulates mammalian numb gene expression by interacting with its mRNA. Mol Cell Biol 2001, 21(12):3888-900.
  • [23]Spears E, Neufeld KL: Novel double-negative feedback loop between adenomatous polyposis coli and Musashi1 in colon epithelia. J Biol Chem 2011, 286(7):4946-50.
  • [24]Park SM, Deering RP, Lu Y, Tivnan P, Lianoglou S, Al-Shahrour F, et al.: Musashi-2 controls cell fate, lineage bias, and TGF-beta signaling in HSCs. J Exp Med 2014, 211(1):71-87.
  • [25]Erhardt JA, Pittman RN: Ectopic p21WAF1 expression induces differentiation-specific cell cycle changes in PC12 cells characteristic of nerve growth factor treatment. J Biol Chem 1998, 273:23517-23.
  • [26]Hughes AL, Gollapudi L, Sladek TL, Neet KE: Mediation of nerve growth factor-driven cell cycle arrest in PC12 cells by p53. Simultaneous differentiation and proliferation subsequent to p53 functional inactivation. J Biol Chem 2000, 275(48):37829-37.
  • [27]Yan G, Ziff EB: NGF regulates the PC12 cell cycle machinery through specific inhibition of the Cdk kinases and induction of cyclin D1. J Neuroscience 1995, 15(9):6200-12.
  • [28]MacNicol MC, Cragle CE, MacNicol AM: Context-dependent regulation of Musashi-mediated mRNA translation and cell cycle regulation. Cell Cycle 2011, 10(1):39-44.
  • [29]Arumugam K, Wang Y, Hardy LL, MacNicol MC, MacNicol AM: Enforcing temporal control of maternal mRNA translation during oocyte cell cycle progression. EMBO J 2010, 29:387-97.
  • [30]Charlesworth A, Wilczynska A, Thampi P, Cox LL, MacNicol AM: Musashi regulates the temporal order of mRNA translation during Xenopus oocyte maturation. EMBO J 2006, 25:2792-801.
  • [31]Arumugam K, MacNicol MC, Wang Y, Cragle CE, Tackett AJ, Hardy LL, et al.: Ringo/CDK and MAP kinase regulate the activity of the cell fate determinant Musashi to promote cell cycle re-entry in Xenopus oocytes. J Biol Chem 2012, 287:10639-49.
  • [32]Warfel NA, El-Deiry WS: p21WAF1 and tumourigenesis: 20 years after. Curr Opin Oncol 2013, 25(1):52-8.
  • [33]Shi Y, Felley-Bosco E, Marti TM, Orlowski K, Pruschy M, Stahel RA: Starvation-induced activation of ATM/Chk2/p53 signaling sensitizes cancer cells to cisplatin. BMC Cancer 2012, 12:571. BioMed Central Full Text
  • [34]Heinrich EM, Dimmeler S: MicroRNAs and stem cells: control of pluripotency, reprogramming, and lineage commitment. Circ Res 2012, 110(7):1014-22.
  • [35]Biedermann B, Hotz HR, Ciosk R: The Quaking family of RNA-binding proteins: coordinators of the cell cycle and differentiation. Cell Cycle 2010, 9(10):1929-33.
  • [36]Bitterman PB, Polunovsky VA: Translational control of cell fate: from integration of environmental signals to breaching anticancer defense. Cell Cycle 2012, 11(6):1097-107.
  • [37]Muto J, Imai T, Ogawa D, Nishimoto Y, Okada Y, Mabuchi Y, et al.: RNA-binding protein Musashi1 modulates glioma cell growth through the post-transcriptional regulation of Notch and PI3 kinase/Akt signaling pathways. PLoS One 2012, 7(3):e33431.
  • [38]Kawahara H, Okada Y, Imai T, Iwanami A, Mischel PS, Okano H: Musashi1 cooperates in abnormal cell lineage protein 28 (Lin28)-mediated let-7 family microRNA biogenesis in early neural differentiation. J Biol Chem 2011, 286(18):16121-30.
  • [39]Cragle C, Macnicol AM: Musashi-directed translational activation of target mRNAs is mediated by the poly[A] polymerase, Germline Development-2. J Biol Chem 2014, 289:14239-51.
  • [40]Bish R, Vogel C: RNA binding protein-mediated post-transcriptional gene regulation in medulloblastoma. Mol Cells 2014, 37(5):357-64.
  • [41]de Sousa Abreu R, Sanchez-Diaz PC, Vogel C, Burns SC, Ko D, Burton TL, et al.: Genomic analyses of musashi1 downstream targets show a strong association with cancer-related processes. J Biol Chem 2009, 284(18):12125-35.
  • [42]Vo DT, Subramaniam D, Remke M, Burton TL, Uren PJ, Gelfond JA, et al.: The RNA-binding protein Musashi1 affects medulloblastoma growth via a network of cancer-related genes and is an indicator of poor prognosis. Am J Pathol 2012, 181(5):1762-72.
  • [43]Rutledge CE, Lau HT, Mangan H, Hardy LL, Sunnotel O, Guo F, et al.: Efficient translation of Dnmt1 requires cytoplasmic polyadenylation and Musashi binding elements. PLoS One 2014, 9(2):e88385.
  • [44]Sakakibara S, Nakamura Y, Yoshida T, Shibata S, Koike M, Takano H, et al.: RNA-binding protein Musashi family: roles for CNS stem cells and a subpopulation of ependymal cells revealed by targeted disruption and antisense ablation. Proc Natl Acad Sci U S A 2002, 99(23):15194-9.
  • [45]Nakamura Y, Sakakibara S, Miyata T, Ogawa M, Shimazaki T, Weiss S, et al.: The bHLH gene hes1 as a repressor of the neuronal commitment of CNS stem cells. J Neurosci 2000, 20(1):283-93.
  • [46]Cao QL, Howard RM, Dennison JB, Whittemore SR: Differentiation of engrafted neuronal-restricted precursor cells is inhibited in the traumatically injured spinal cord. Exp Neurol 2002, 177(2):349-59.
  • [47]Davis PK, Ho A, Dowdy SF: Biological methods for cell-cycle synchronization of mammalian cells. Biotechniques 2001, 30(6):1322. –1326, 1328, 1330–1321
  • [48]MacNicol AM, Muslin AJ, Williams LT: Raf-1 kinase is essential for early Xenopus development and mediates the induction of mesoderm by FGF. Cell 1993, 73(3):571-83.
  • [49]Charlesworth A, Cox LL, MacNicol AM: Cytoplasmic polyadenylation element (CPE)- and CPE-binding protein (CPEB)-independent mechanisms regulate early class maternal mRNA translational activation in xenopus oocytes. J Biol Chem 2004, 279(17):17650-9.
  • [50]Charlesworth A, Ridge JA, King LA, MacNicol MC, MacNicol AM: A novel regulatory element determines the timing of Mos mRNA translation during Xenopus oocyte maturation. EMBO J 2002, 21:2798-806.
  • [51]Charlesworth A, Welk J, MacNicol A: The temporal control of Wee1 mRNA translation during Xenopus oocyte maturation is regulated by cytoplasmic polyadenylation elements within the 3′ untranslated region. Dev Biol 2000, 227(2):706-19.
  文献评价指标  
  下载次数:71次 浏览次数:37次