期刊论文详细信息
BMC Medicine
The systemic influence of platelet-derived growth factors on bone marrow mesenchymal stem cells in fracture patients
Elena Jones2  Dennis McGonagle2  Sally A Boxall2  Peter V Giannoudis1  Hiang Boon Tan1 
[1]Academic Unit of Trauma and Orthopaedics, Leeds General Infirmary, Great George St, Leeds LS1 3EX, UK
[2]Leeds Institute of Rheumatic & Musculoskeletal Medicine, University of Leeds, Room 5.24, Clinical Sciences Building, Leeds LS9 7TF, UK
关键词: Platelets;    PDGF;    Bone marrow;    MSCs;    Mesenchymal stem cells;   
Others  :  1109846
DOI  :  10.1186/s12916-014-0202-6
 received in 2014-08-08, accepted in 2014-10-03,  发布年份 2015
PDF
【 摘 要 】

Background

Fracture healing is a complex process regulated by a variety of cells and signalling molecules which act both locally and systemically. The aim of this study was to investigate potential changes in patients’ mesenchymal stem cells (MSCs) in the iliac crest (IC) bone marrow (BM) and in peripheral blood (PB) in relation to the severity of trauma and to correlate them with systemic changes reflective of inflammatory and platelet responses following fracture.

Methods

ICBM samples were aspirated from two trauma groups: isolated trauma and polytrauma (n = 8 and 18, respectively) at two time-points post-fracture and from non-trauma controls (n = 7). Matched PB was collected every other day for a minimum of 14 days. BM MSCs were enumerated using colony forming-fibroblast (CFU-F) assay and flow cytometry for the CD45-CD271+ phenotype.

Results

Regardless of the severity of trauma, no significant increase or decrease in BM MSCs was observed following fracture and MSCs were not mobilised into PB. However, direct positive correlations were observed between changes in the numbers of aspirated BM MSCs and time-matched changes in their serum PDGF-AA and -BB. In vitro, patients’ serum induced MSC proliferation in a manner reflecting changes in PDGFs. PDGF receptors CD140a and CD140b were expressed on native CD45-CD271+ BM MSCs (average 12% and 64%, respectively) and changed over time in direct relationship with platelets/PDGFs.

Conclusions

Platelet lysates and other platelet-derived products are used to expand MSCs ex vivo. This study demonstrates that endogenous PDGFs can influence MSC responses in vivo. This indicates a highly dynamic, rather than static, MSC nature in humans.

【 授权许可】

   
2015 Tan et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150203023743741.pdf 1538KB PDF download
Figure 5. 54KB Image download
Figure 4. 36KB Image download
Figure 3. 109KB Image download
Figure 2. 72KB Image download
Figure 1. 53KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA: Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 2003, 88:873-884.
  • [2]Keel M, Trentz O: Pathophysiology of polytrauma. Injury 2005, 36:691-709.
  • [3]Kumar PJ, Clark ML: Kumar & Clark's Clinical Medicine. 7th edition. Saunders Elsevier, Edinburgh; 2009.
  • [4]Hensler T, Sauerland S, Bouillon B, Raum M, Rixen D, Helling HJ, Andermahr J, Neugebauer EA: Association between injury pattern of patients with multiple injuries and circulating levels of soluble tumor necrosis factor receptors, interleukin-6 and interleukin-10, and polymorphonuclear neutrophil elastase. J Trauma 2002, 52:962-970.
  • [5]Gebhard F, Pfetsch H, Steinbach G, Strecker W, Kinzl L, Bruckner UB: Is interleukin 6 an early marker of injury severity following major trauma in humans? Arch Surg 2000, 135:291-295.
  • [6]Marsell R, Einhorn TA: The biology of fracture healing. Injury 2011, 42:551-555.
  • [7]Granero-Molto F, Weis JA, Miga MI, Landis B, Myers TJ, O'Rear L, Longobardi L, Jansen ED, Mortlock DP, Spagnoli A: Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 2009, 27:1887-1898.
  • [8]Ito H: Chemokines in mesenchymal stem cell therapy for bone repair: a novel concept of recruiting mesenchymal stem cells and the possible cell sources. Mod Rheumatol 2011, 21:113-121.
  • [9]Mansilla E, Marin GH, Drago H, Sturla F, Salas E, Gardiner C, Bossi S, Lamonega R, Guzman A, Nunez A, Gil MA, Piccinelli G, Ibar R, Soratti C: Bloodstream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: new evidence for their use in regenerative medicine. Transplant Proc 2006, 38:967-969.
  • [10]Shyu WC, Lee YJ, Liu DD, Lin SZ, Li H: Homing genes, cell therapy and stroke. Front Biosci 2006, 11:899-907.
  • [11]Ramirez M, Lucia A, Gomez-Gallego F, Esteve-Lanao J, Perez-Martinez A, Foster C, Andreu AL, Martin MA, Madero L, Arenas J, García-Castro J: Mobilisation of mesenchymal cells into blood in response to skeletal muscle injury. Br J Sports Med 2006, 40:719-722.
  • [12]Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG: Circulating skeletal stem cells. J Cell Biol 2001, 153:1133-1140.
  • [13]Jones E, McGonagle D: Human bone marrow mesenchymal stem cells in vivo. Rheumatology (Oxford) 2008, 47:126-131.
  • [14]Caplan AI, Correa D: PDGF in bone formation and regeneration: new insights into a novel mechanism involving MSCs. J Orthop Res 2011, 29:1795-1803.
  • [15]Hollinger JO, Hart CE, Hirsch SN, Lynch S, Friedlaender GE: Recombinant human platelet-derived growth factor: biology and clinical applications. J Bone Joint Surg Am 2008, 90:48-54.
  • [16]Pountos I, Georgouli T, Henshaw K, Bird H, Giannoudis PV: Release of growth factors and the effect of age, sex, and severity of injury after long bone fracture. Acta Orthop 2013, 84:65-70.
  • [17]Gronthos S, Simmons PJ: The growth factor requirements of STRO-1-positive human bone marrow stromal precursors under serum-deprived conditions in vitro. Blood 1995, 85:929-940.
  • [18]Gharibi B, Hughes FJ: Effects of medium supplements on proliferation, differentiation potential, and in vitro expansion of mesenchymal stem cells. Stem Cells Transl Med 2012, 1:771-782.
  • [19]Pountos I, Georgouli T, Henshaw K, Bird H, Jones E, Giannoudis PV: The effect of bone morphogenetic protein-2, bone morphogenetic protein-7, parathyroid hormone, and platelet-derived growth factor on the proliferation and osteogenic differentiation of mesenchymal stem cells derived from osteoporotic bone. J Orthop Trauma 2010, 24:552-556.
  • [20]Jones EA, Kinsey SE, English A, Jones RA, Straszynski L, Meredith DM, Markham AF, Jack A, Emery P, McGonagle D: Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum 2002, 46:3349-3360.
  • [21]Tormin A, Li O, Brune JC, Walsh S, Schutz B, Ehinger M, Ditzel N, Kassem M, Scheding S: CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood 2011, 117:5067-5077.
  • [22]Cuthbert R, Boxall SA, Tan HB, Giannoudis PV, McGonagle D, Jones E: Single-platform quality control assay to quantify multipotential stromal cells in bone marrow aspirates prior to bulk manufacture or direct therapeutic use. Cytotherapy 2012, 14:431-440.
  • [23]Baker SP, O'Neill B, Haddon W Jr, Long WB: The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma 1974, 14:187-196.
  • [24]Cox G, Boxall SA, Giannoudis PV, Buckley CT, Roshdy T, Churchman SM, McGonagle D, Jones E: High abundance of CD271(+) multipotential stromal cells (MSCs) in intramedullary cavities of long bones. Bone 2012, 50:510-517.
  • [25]Hernigou P, Homma Y, Flouzat Lachaniette CH, Poignard A, Allain J, Chevallier N, Rouard H: Benefits of small volume and small syringe for bone marrow aspirations of mesenchymal stem cells. Int Orthop 2013, 37:2279-2287.
  • [26]Churchman SM, Ponchel F, Boxall SA, Cuthbert R, Kouroupis D, Roshdy T, Giannoudis PV, Emery P, McGonagle D, Jones EA: Transcriptional profile of native CD271+ multipotential stromal cells: evidence for multiple fates, with prominent osteogenic and Wnt pathway signaling activity. Arthritis Rheum 2012, 64:2632-2643.
  • [27]Jones EA, Crawford A, English A, Henshaw K, Mundy J, Corscadden D, Chapman T, Emery P, Hatton P, McGonagle D: Synovial fluid mesenchymal stem cells in health and early osteoarthritis: detection and functional evaluation at the single-cell level. Arthritis Rheum 2008, 58:1731-1740.
  • [28]Einhorn TA: The science of fracture healing. J Orthop Trauma 2005, 19:S4-S6.
  • [29]Veyrat-Masson R, Boiret-Dupre N, Rapatel C, Descamps S, Guillouard L, Guerin JJ, Pigeon P, Boisgard S, Chassagne J, Berger MG: Mesenchymal content of fresh bone marrow: a proposed quality control method for cell therapy. Br J Haematol 2007, 139:312-320.
  • [30]Hart CE, Bailey M, Curtis DA, Osborn S, Raines E, Ross R, Forstrom JW: Purification of PDGF-AB and PDGF-BB from human platelet extracts and identification of all three PDGF dimers in human platelets. Biochemistry 1990, 29:166-172.
  • [31]Madsen CV, Steffensen KD, Olsen DA, Waldstrom M, Smerdel M, Adimi P, Brandslund I, Jakobsen A: Serial measurements of serum PDGF-AA, PDGF-BB, FGF2, and VEGF in multiresistant ovarian cancer patients treated with bevacizumab. J Ovarian Res 2012, 5:23. BioMed Central Full Text
  • [32]Buhring HJ, Battula VL, Treml S, Schewe B, Kanz L, Vogel W: Novel markers for the prospective isolation of human MSC. Ann N Y Acad Sci 2007, 1106:262-271.
  • [33]Maijenburg MW, Kleijer M, Vermeul K, Mul EP, van Alphen FP, van der Schoot CE, Voermans C: The composition of the mesenchymal stromal cell compartment in human bone marrow changes during development and aging. Haematologica 2012, 97:179-183.
  • [34]Siegel G, Kluba T, Hermanutz-Klein U, Bieback K, Northoff H, Schafer R: Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells. BMC Med 2013, 11:146. BioMed Central Full Text
  • [35]Kitaori T, Ito H, Schwarz EM, Tsutsumi R, Yoshitomi H, Oishi S, Nakano M, Fujii N, Nagasawa T, Nakamura T: Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum 2009, 60:813-823.
  • [36]Nystedt J, Anderson H, Tikkanen J, Pietila M, Hirvonen T, Takalo R, Heiskanen A, Satomaa T, Natunen S, Lehtonen S, Hakkarainen T, Korhonen M, Laitinen S, Valmu L, Lehenkari P: Cell surface structures influence lung clearance rate of systemically infused mesenchymal stromal cells. Stem Cells 2013, 31:317-326.
  • [37]Kuznetsov SA, Mankani MH, Leet AI, Ziran N, Gronthos S, Robey PG: Circulating connective tissue precursors: extreme rarity in humans and chondrogenic potential in guinea pigs. Stem Cells 2007, 25:1830-1839.
  • [38]Seebach C, Henrich D, Tewksbury R, Wilhelm K, Marzi I: Number and proliferative capacity of human mesenchymal stem cells are modulated positively in multiple trauma patients and negatively in atrophic nonunions. Calcif Tissue Int 2007, 80:294-300.
  • [39]Marsell R, Steen B, Bais MV, Mortlock DP, Einhorn TA, Gerstenfeld LC: Skeletal trauma generates systemic BMP2 activation that is temporally related to the mobilization of CD73+ cells. J Orthop Res 2014, 32:17-23.
  • [40]Ng F, Boucher S, Koh S, Sastry KS, Chase L, Lakshmipathy U, Choong C, Yang Z, Vemuri MC, Rao MS, Tanavde V: PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood 2008, 112:295-307.
  • [41]Fekete N, Gadelorge M, Furst D, Maurer C, Dausend J, Fleury-Cappellesso S, Mailander V, Lotfi R, Ignatius A, Sensebe L, Bourin P, Schrezenmeier H, Rojewski MT: Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identification of active components. Cytotherapy 2012, 14:540-554.
  • [42]Andrew JG, Hoyland JA, Freemont AJ, Marsh DR: Platelet-derived growth factor expression in normally healing human fractures. Bone 1995, 16:455-460.
  • [43]Morikawa S, Mabuchi Y, Kubota Y, Nagai Y, Niibe K, Hiratsu E, Suzuki S, Miyauchi-Hara C, Nagoshi N, Sunabori T, Shimmura S, Miyawaki A, Nakagawa T, Suda T, Okano H, Matsuzaki Y: Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med 2009, 206:2483-2496.
  • [44]Pinho S, Lacombe J, Hanoun M, Mizoguchi T, Bruns I, Kunisaki Y, Frenette PS: PDGFRalpha and CD51 mark human nestin + sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med 2013, 210:1351-1367.
  • [45]Sinzinger H, Fitscha P, Peskar BA: Platelet half-life, plasma thromboxane B2 and circulating endothelial-cells in peripheral vascular disease. Angiology 1986, 37:112-118.
  • [46]Rubio-Azpeitia E, Andia I: Partnership between platelet-rich plasma and mesenchymal stem cells: in vitro experience. Muscles Ligaments Tendons J 2014, 4:52-62.
  • [47]Wang JH: Can PRP effectively treat injured tendons? Muscles Ligaments Tendons J 2014, 4:35-37.
  • [48]Xie A, Nie L, Shen G, Cui Z, Xu P, Ge H, Tan Q: The application of autologous plateletrich plasma gel in cartilage regeneration. Mol Med Rep 2014, 10:1642-1648.
  • [49]El Backly RM, Zaky SH, Muraglia A, Tonachini L, Brun F, Canciani B, Chiapale D, Santolini F, Cancedda R, Mastrogiacomo M: A platelet-rich plasma-based membrane as a periosteal substitute with enhanced osteogenic and angiogenic properties: a new concept for bone repair. Tissue Eng Part A 2013, 19:152-165.
  • [50]Philippart P, Meuleman N, Stamatopoulos B, Najar M, Pieters K, De Bruyn C, Bron D, Lagneaux L: In vivo production of mesenchymal stromal cells after injection of autologous platelet-rich plasma activated by recombinant human soluble tissue factor in the bone marrow of healthy volunteers. Tissue Eng Part A 2014, 20:160-170.
  • [51]Bajada S, Marshall MJ, Wright KT, Richardson JB, Johnson WE: Decreased osteogenesis, increased cell senescence and elevated Dickkopf-1 secretion in human fracture non union stromal cells. Bone 2009, 45:726-735.
  文献评价指标  
  下载次数:13次 浏览次数:3次