BMC Genomics | |
Regulation of microRNAs miR-30a and miR-143 in cerebral vasculature after experimental subarachnoid hemorrhage in rats | |
Lars Edvinsson1  Karin Warfvinge1  Janne Nielsen1  Lars Schack Kruse1  Claus Heiner Bang-Berthelsen1  Gro Klitgaard Povlsen1  Anne Holt Müller1  | |
[1] Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup University Hospital, Nordre Ringvej 69, Glostrup 2600, Denmark | |
关键词: Non-coding RNA; Biomarker; Artery; Animal model; SAH; | |
Others : 1131240 DOI : 10.1186/s12864-015-1341-7 |
|
received in 2014-09-08, accepted in 2015-02-12, 发布年份 2015 | |
【 摘 要 】
Background
microRNAs (miRNAs) are important regulators of translation and have been implicated in the pathogenesis of a number of cardiovascular diseases, including stroke, and suggested as possible prognostic biomarkers. Our aim was to identify miRNAs that are differentially regulated in cerebral arteries after subarachnoid hemorrhage (SAH), using a rat injection model of SAH and a qPCR-based screen of 728 rat miRNAs. Additionally, serum was analyzed for a possible spill-over to the circulation of regulated miRNAs from the vessel walls.
Results
We identified 482 different miRNAs expressed in cerebral arteries post-SAH. Two miRNAs, miR-30a and miR-143, were significantly upregulated in cerebral arteries after SAH when compared to sham-operated animals. However, none of these exhibited significantly altered serum levels after SAH versus post-sham surgery. The most robust upregulation was seen for miR-143, which has several predicted targets and is a strong regulator of vascular morphology. We hypothesize that miR-30a and miR-143 may play a role in the vascular wall changes seen after SAH.
Conclusions
We report that miR-30a and miR-143 in the cerebral arteries show significant changes over time after SAH, but do not differ from sham-operated rats at 24 h post-SAH. Although this finding suggests interesting novel possible mechanisms involved in post-SAH cerebrovascular changes, the lack of regulation of these miRNAs in serum excludes their use as blood-borne biomarkers for cerebrovascular changes following SAH.
【 授权许可】
2015 Müller et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150301024412386.pdf | 639KB | download | |
Figure 2. | 52KB | Image | download |
Figure 1. | 47KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Johnston SC, Selvin S, Gress DR: The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology 1998, 50(5):1413-8.
- [2]Edvinsson L, Povlsen GK: Late cerebral ischaemia after subarachnoid haemorrhage: is cerebrovascular receptor upregulation the mechanism behind? Acta Physiol (Oxf) 2011, 203(1):209-24.
- [3]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-97.
- [4]Kawamata T, Making TY: RISC: Trends Biochem Sci. 2010, 35(7):368-76.
- [5]Krol J, Loedige I, Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010, 11(9):597-610.
- [6]Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R: MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A 2008, 105(5):1608-13.
- [7]Chan JA, Krichevsky AM, Kosik KS: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005, 65(14):6029-33.
- [8]Bi Y, Liu G, Yang R: MicroRNAs: novel regulators during the immune response. J Cell Physiol 2009, 218(3):467-72.
- [9]Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al.: A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007, 129(7):1401-14.
- [10]Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460(7256):705–10.
- [11]Dharap A, Bowen K, Place R, Li LC, Vemuganti R: Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab 2009, 29(4):675-87.
- [12]Liu DZ, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X, et al.: Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 2010, 30(1):92-101.
- [13]Tan KS, Armugam A, Sepramaniam S, Lim KY, Setyowati KD, Wang CW, et al.: Expression profile of MicroRNAs in young stroke patients. PLoS One 2009, 4(11):e7689.
- [14]Jeyaseelan K, Lim KY, Armugam A: MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 2008, 39(3):959-66.
- [15]Tan JR, Koo YX, Kaur P, Liu F, Armugam A, Wong PT, et al. microRNAs in Stroke Pathogenesis. Curr Mol Med. 2011;11(2):76–92.
- [16]Vikman P, Ansar S, Henriksson M, Stenman E, Edvinsson L: Cerebral ischemia induces transcription of inflammatory and extracellular-matrix-related genes in rat cerebral arteries. Exp Brain Res 2007, 183(4):499-510.
- [17]Vikman P, Beg S, Khurana TS, Hansen-Schwartz J, Edvinsson L: Gene expression and molecular changes in cerebral arteries following subarachnoid hemorrhage in the rat. J Neurosurg 2006, 105(3):438-44.
- [18]Johansson S, Povlsen GK, Edvinsson L: Expressional changes in cerebrovascular receptors after experimental transient forebrain ischemia. PLoS One 2012, 7(7):e41852.
- [19]Edvinsson LI, Povlsen GK: Vascular plasticity in cerebrovascular disorders. J Cereb Blood Flow Metab 2011, 31(7):1554-71.
- [20]Ansar S, Edvinsson L: Equal contribution of increased intracranial pressure and subarachnoid blood to cerebral blood flow reduction and receptor upregulation after subarachnoid hemorrhage. Lab Invest J Neurosurg 2009, 111(5):978-87.
- [21]Rangrez AY, Massy ZA, Metzinger-Le Meuth V, Metzinger L. miR-143 and miR-145: molecular keys to switch the phenotype of vascular smooth muscle cells. Circ Cardiovasc Genet. 2011;4(2):197–205.
- [22]Torella D, Iaconetti C, Catalucci D, Ellison GM, Leone A, Waring CD, et al.: MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ Res 2011, 109(8):880-93.
- [23]Nazari-Jahantigh M, Wei Y, Schober A: The role of microRNAs in arterial remodelling. Thromb Haemost 2012, 107(4):611-8.
- [24]Cheng Y, Zhang C: MicroRNA-21 in cardiovascular disease. J Cardiovasc Transl Res 2010, 3(3):251-5.
- [25]Larsson E, Fredlund Fuchs P, Heldin J, Barkefors I, Bondjers C, Genove G, et al.: Discovery of microvascular miRNAs using public gene expression data: miR-145 is expressed in pericytes and is a regulator of Fli1. Genome Med 2009, 1(11):108. BioMed Central Full Text
- [26]Sepramaniam S, Armugam A, Lim KY, Karolina DS, Swaminathan P, Tan JR, et al.: MicroRNA 320a functions as a novel endogenous modulator of aquaporins 1 and 4 as well as a potential therapeutic target in cerebral ischemia. J Biol Chem 2010, 285(38):29223-30.
- [27]Samraj AK, Muller AH, Grell AS, Edvinsson L: Role of unphosphorylated transcription factor STAT3 in late cerebral ischemia after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2014, 34(5):759-63.
- [28]Parker BL, Larsen MR, Edvinsson LI, Povlsen GK: Signal transduction in cerebral arteries after subarachnoid hemorrhage-a phosphoproteomic approach. J Cereb Blood Flow Metab 2013, 33(8):1259-69.
- [29]Ansar S, Vikman P, Nielsen M, Cerebrovascular EL: ETB: 5-HT1B, and AT1 receptor upregulation correlates with reduction in regional CBF after subarachnoid hemorrhage. Am J Physiol Heart Circ Physiol 2007, 293(6):H3750-8.
- [30]Ansar S, Maddahi A, Edvinsson L: Inhibition of cerebrovascular raf activation attenuates cerebral blood flow and prevents upregulation of contractile receptors after subarachnoid hemorrhage. BMC Neurosci 2011, 12:107. BioMed Central Full Text
- [31]Maddahi A, Ansar S, Chen Q, Edvinsson L: Blockade of the MEK/ERK pathway with a raf inhibitor prevents activation of pro-inflammatory mediators in cerebral arteries and reduction in cerebral blood flow after subarachnoid hemorrhage in a rat model. J Cereb Blood Flow Metab 2011, 31(1):144-54.
- [32]Albinsson S, Suarez Y, Skoura A, Offermanns S, Miano JM, Sessa WC: MicroRNAs are necessary for vascular smooth muscle growth, differentiation, and function. Arterioscler Thromb Vasc Biol 2010, 30(6):1118-26.
- [33]Boettger T, Beetz N, Kostin S, Schneider J, Kruger M, Hein L, et al.: Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Invest 2009, 119(9):2634-47.
- [34]Xin M, Small EM, Sutherland LB, Qi X, McAnally J, Plato CF, et al.: MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev 2009, 23(18):2166-78.
- [35]Albinsson S, Skoura A, Yu J, DiLorenzo A, Fernandez-Hernando C, Offermanns S, et al.: Smooth muscle miRNAs are critical for post-natal regulation of blood pressure and vascular function. PLoS One 2011, 6(4):e18869.
- [36]Kolias AG, Sen J, Belli A: Pathogenesis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage: putative mechanisms and novel approaches. J Neurosci Res 2009, 87(1):1-11.
- [37]Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der Made I, et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res. 2009;104(2):170–8. 176p following 178.
- [38]Kalani A, Kamat PK, Familtseva A, Chaturvedi P, Muradashvili N, Narayanan N, et al.: Role of microRNA29b in blood–brain barrier dysfunction during hyperhomocysteinemia: an epigenetic mechanism. J Cereb Blood Flow Metab 2014, 34(7):1212-22.
- [39]Prunell GF, Mathiesen T, Svendgaard NA: A new experimental model in rats for study of the pathophysiology of subarachnoid hemorrhage. Neuroreport 2002, 13(18):2553-6.
- [40]Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008, 3(6):1101-8.
- [41]Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F, Speleman F, et al.: A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol 2009, 10(6):R64. BioMed Central Full Text
- [42]Andersen CL, Jensen JL, Orntoft TF: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 2004, 64(15):5245-50.