期刊论文详细信息
BMC Cell Biology
ERK-associated changes in E2F4 phosphorylation, localization and transcriptional activity during mitogenic stimulation in human intestinal epithelial crypt cells
Nathalie Rivard1  Caroline Leblanc1  Julie C Carrier1  Sébastien Cagnol1  Marie-Christine Paquin1 
[1] Département d’Anatomie et Biologie Cellulaire, Cancer Research Pavillon, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201, Jean-Mignault, Sherbrooke, J1E4K8, QC, Canada
关键词: EGF;    ERK;    GSK3;    Cell cycle;    Colorectal cancer;    Proliferation;    Intestinal epithelium;    E2F;   
Others  :  855196
DOI  :  10.1186/1471-2121-14-33
 received in 2013-02-11, accepted in 2013-08-02,  发布年份 2013
PDF
【 摘 要 】

Background

The transcription factor E2F4 controls proliferation of normal and cancerous intestinal epithelial cells. E2F4 localization in normal human intestinal epithelial cells (HIEC) is cell cycle-dependent, being cytoplasmic in quiescent differentiated cells but nuclear in proliferative cells. However, the intracellular signaling mechanisms regulating such E2F4 localization remain unknown.

Results

Treatment of quiescent HIEC with serum induced ERK1/2 activation, E2F4 phosphorylation, E2F4 nuclear translocation and G1/S phase transition while inhibition of MEK/ERK signaling by U0126 prevented these events. Stimulation of HIEC with epidermal growth factor (EGF) also led to the activation of ERK1/2 but, in contrast to serum or lysophosphatidic acid (LPA), EGF failed to induce E2F4 phosphorylation, E2F4 nuclear translocation and G1/S phase transition. Furthermore, Akt and GSK3β phosphorylation levels were markedly enhanced in serum- or LPA-stimulated HIEC but not by EGF. Importantly, E2F4 phosphorylation, E2F4 nuclear translocation and G1/S phase transition were all observed in response to EGF when GSK3 activity was concomitantly inhibited by SB216763. Finally, E2F4 was found to be overexpressed, phosphorylated and nuclear localized in epithelial cells from human colorectal adenomas exhibiting mutations in APC and KRAS or BRAF genes, known to deregulate GSK3/β-catenin and MEK/ERK signaling, respectively.

Conclusions

The present results indicate that MEK/ERK activation and GSK3 inhibition are both required for E2F4 phosphorylation as well as its nuclear translocation and S phase entry in HIEC. This finding suggests that dysregulated E2F4 nuclear localization may be an instigating event leading to hyperproliferation and hence, of tumor initiation and promotion in the colon and rectum.

【 授权许可】

   
2013 Paquin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140722031333473.pdf 1750KB PDF download
142KB Image download
93KB Image download
73KB Image download
80KB Image download
72KB Image download
104KB Image download
【 图 表 】

【 参考文献 】
  • [1]Sun A, Bagella L, Tutton S, Romano G, Giordano A: From G0 to S phase: a view of the roles played by the retinoblastoma (Rb) family members in the Rb-E2F pathway. J Cell Biochem 2007, 102(6):1400-1404.
  • [2]Polager S, Ginsberg D: E2F - at the crossroads of life and death. Trends Cell Biol 2008, 18(11):528-535.
  • [3]Tsai SY, Opavsky R, Sharma N, Wu L, Naidu S, Nolan E, Feria-Arias E, Timmers C, Opavska J, De Bruin A, Chong JL, Trikha P, Fernandez SA, Stromberg P, Rosol TJ, Leone G: Mouse development with a single E2F activator. Nature 2008, 454(7208):1137-1141.
  • [4]Rempel RE, Saenz-Robles MT, Storms R, Morham S, Ishida S, Engel A, Jakoi L, Melhem MF, Pipas JM, Smith C, Nevins JR: Loss of E2F4 activity leads to abnormal development of multiple cellular lineages. Mol Cell 2000, 6(2):293-306.
  • [5]Kinross KM, Clark AJ, Iazzolino RM, Humbert PO: E2F4 regulates fetal erythropoiesis through the promotion of cellular proliferation. Blood 2006, 108(3):886-895.
  • [6]Wang D, Russell JL, Johnson DG: E2F4 and E2F1 have similar proliferative properties but different apoptotic and oncogenic properties in vivo. Mol Cell Biol 2000, 20(10):3417-3424.
  • [7]Field SJ, Tsai FY, Kuo F, Zubiaga AM, Kaelin WG Jr, Livingston DM, Orkin SH, Greenberg ME: E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 1996, 85(4):549-561.
  • [8]Dagnino L, Fry CJ, Bartley SM, Farnham P, Gallie BL, Phillips RA: Expression patterns of the E2F family of transcription factors during murine epithelial development. Cell Growth Differ 1997, 8(5):553-563.
  • [9]Deschenes C, Alvarez L, Lizotte ME, Vezina A, Rivard N: The nucleocytoplasmic shuttling of E2F4 is involved in the regulation of human intestinal epithelial cell proliferation and differentiation. J Cell Physiol 2004, 199(2):262-273.
  • [10]Garneau H, Paquin MC, Carrier JC, Rivard N: E2F4 expression is required for cell cycle progression of normal intestinal crypt cells and colorectal cancer cells. J Cell Physiol 2009, 221(2):350-358.
  • [11]Gill RM, Hamel PA: Subcellular compartmentalization of E2F family members is required for maintenance of the postmitotic state in terminally differentiated muscle. J Cell Biol 2000, 148(6):1187-1201.
  • [12]Lindeman GJ, Gaubatz S, Livingston DM, Ginsberg D: The subcellular localization of E2F-4 is cell-cycle dependent. Proc Natl Acad Sci USA 1997, 94(10):5095-5100.
  • [13]Van Amerongen MJ, Diehl F, Novoyatleva T, Patra C, Engel FB: E2F4 is required for cardiomyocyte proliferation. Cardiovasc Res 2010, 86(1):92-102.
  • [14]Verona R, Moberg K, Estes S, Starz M, Vernon JP, Lees JA: E2F activity is regulated by cell cycle-dependent changes in subcellular localization. Mol Cell Biol 1997, 17(12):7268-7282.
  • [15]Rivard N, Boucher MJ, Asselin C, L’Allemain G: MAP kinase cascade is required for p27 downregulation and S phase entry in fibroblasts and epithelial cells. Am J Physiol 1999, 277(4 Pt 1):C652-64.
  • [16]Sheng H, Shao J, Townsend CM Jr, Evers BM: Phosphatidylinositol 3-kinase mediates proliferative signals in intestinal epithelial cells. Gut 2003, 52(10):1472-1478.
  • [17]Oliver BL, Sha’afi RI, Hajjar JJ: Transforming growth factor-alpha and epidermal growth factor activate mitogen-activated protein kinase and its substrates in intestinal epithelial cells. Proc Soc Exp Biol Med 1995, 210(2):162-170.
  • [18]Aliaga JC, Deschenes C, Beaulieu JF, Calvo EL, Rivard N: Requirement of the MAP kinase cascade for cell cycle progression and differentiation of human intestinal cells. Am J Physiol 1999, 277(3 Pt 1):G631-41.
  • [19]Zhang H, Bialkowska A, Rusovici R, Chanchevalap S, Shim H, Katz JP, Yang VW, Yun CC: Lysophosphatidic acid facilitates proliferation of colon cancer cells via induction of Kruppel-like factor 5. J Biol Chem 2007, 282(21):15541-15549.
  • [20]Pinto D, Gregorieff A, Begthel H, Clevers H: Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 2003, 17(14):1709-1713.
  • [21]Khaleghpour K, Li Y, Banville D, Yu Z, Shen SH: Involvement of the PI 3-kinase signaling pathway in progression of colon adenocarcinoma. Carcinogenesis 2004, 25(2):241-248.
  • [22]Jope RS, Johnson GV: The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 2004, 29(2):95-102.
  • [23]Takayama T, Miyanishi K, Hayashi T, Sato Y, Niitsu Y: Colorectal cancer: genetics of development and metastasis. J Gastroenterol 2006, 41(3):185-192.
  • [24]van der Flier LG, Clevers H: Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 2009, 71:241-260.
  • [25]Meloche S, Pouyssegur J: The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 2007, 26(22):3227-3239.
  • [26]Magae J, Wu CL, Illenye S, Harlow E, Heintz NH: Nuclear localization of DP and E2F transcription factors by heterodimeric partners and retinoblastoma protein family members. J Cell Sci 1996, 109(Pt 7):1717-1726.
  • [27]Araki K, Kawauchi K, Tanaka N: IKK/NF-kappaB signaling pathway inhibits cell-cycle progression by a novel Rb-independent suppression system for E2F transcription factors. Oncogene 2008, 27(43):5696-5705.
  • [28]Ginsberg D, Vairo G, Chittenden T, Xiao ZX, Xu G, Wydner KL, DeCaprio JA, Lawrence JB, Livingston DM: E2F-4, a new member of the E2F transcription factor family, interacts with p107. Genes Dev 1994, 8(22):2665-2679.
  • [29]Popov B, Chang LS, Serikov V: Cell cycle-related transformation of the E2F4-p130 repressor complex. Biochem Biophys Res Commun 2005, 336(3):762-769.
  • [30]Scime A, Li L, Ciavarra G, Whyte P: Cyclin D1/cdk4 can interact with E2F4/DP1 and disrupts its DNA-binding capacity. J Cell Physiol 2008, 214(3):568-581.
  • [31]Chambard JC, Lefloch R, Pouyssegur J, Lenormand P: ERK implication in cell cycle regulation. Biochim Biophys Acta 2007, 1773(8):1299-1310.
  • [32]Challacombe DN, Wheeler EE: Trophic action of epidermal growth factor on human duodenal mucosa cultured in vitro. Gut 1991, 32(9):991-993.
  • [33]Thomas MG, Brown GR, Alison MR, Williamson RC: Divergent effects of epidermal growth factor and calcipotriol on human rectal cell proliferation. Gut 1994, 35(12):1742-1746.
  • [34]Gasslander T, Permert J, Feng W, Adrian TE, Larsson J: Trophic effects by epidermal growth factor on duodenal mucosa and exocrine pancreas in rats. Eur Surg Res 1997, 29(2):142-149.
  • [35]Boucher MJ, Jean D, Vezina A, Rivard N: Dual role of MEK/ERK signaling in senescence and transformation of intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2004, 286(5):G736-46.
  • [36]Francoeur C, Escaffit F, Vachon PH, Beaulieu JF: Proinflammatory cytokines TNF-alpha and IFN-gamma alter laminin expression under an apoptosis-independent mechanism in human intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2004, 287(3):G592-8.
  • [37]Perreault N, Beaulieu JF: Use of the dissociating enzyme thermolysin to generate viable human normal intestinal epithelial cell cultures. Exp Cell Res 1996, 224(2):354-364.
  • [38]Escaffit F, Perreault N, Jean D, Francoeur C, Herring E, Rancourt C, Rivard N, Vachon PH, Pare F, Boucher MP, Auclair J, Beaulieu JF: Repressed E-cadherin expression in the lower crypt of human small intestine: a cell marker of functional relevance. Exp Cell Res 2005, 302(2):206-220.
  • [39]Quaroni A, Beaulieu JF: Cell dynamics and differentiation of conditionally immortalized human intestinal epithelial cells. Gastroenterology 1997, 113(4):1198-1213.
  • [40]Basora N, Herring-Gillam FE, Boudreau F, Perreault N, Pageot LP, Simoneau M, Bouatrouss Y, Beaulieu JF: Expression of functionally distinct variants of the beta(4)A integrin subunit in relation to the differentiation state in human intestinal cells. J Biol Chem 1999, 274(42):29819-29825.
  • [41]Pageot LP, Perreault N, Basora N, Francoeur C, Magny P, Beaulieu JF: Human cell models to study small intestinal functions: recapitulation of the crypt-villus axis. Microsc Res Tech 2000, 49(4):394-406.
  • [42]Beaulieu JF, Millane G, Calvert R: Developmental expression of two antigens associated with mouse intestinal crypts. Dev Dyn 1992, 193(4):325-331.
  • [43]Altomare DA, Testa JR: Perturbations of the AKT signaling pathway in human cancer. Oncogene 2005, 24(50):7455-7464.
  • [44]Rosseland CM, Wierod L, Flinder LI, Oksvold MP, Skarpen E, Huitfeldt HS: Distinct functions of H-Ras and K-Ras in proliferation and survival of primary hepatocytes due to selective activation of ERK and PI3K. J Cell Physiol 2008, 215(3):818-826.
  • [45]Nakashima M, Adachi S, Yasuda I, Yamauchi T, Kozawa O, Moriwaki H: Rho-kinase regulates negatively the epidermal growth factor-stimulated colon cancer cell proliferation. Int J Oncol 2010, 36(3):585-592.
  • [46]Lennartsson J, Burovic F, Witek B, Jurek A, Heldin CH: Erk 5 is necessary for sustained PDGF-induced Akt phosphorylation and inhibition of apoptosis. Cell Signal 2010.
  • [47]Rozengurt E: Mitogenic signaling pathways induced by G protein-coupled receptors. J Cell Physiol 2007, 213(3):589-602.
  • [48]Garcia-Alvarez G, Ventura V, Ros O, Aligue R, Gil J, Tauler A: Glycogen synthase kinase-3beta binds to E2F1 and regulates its transcriptional activity. Biochim Biophys Acta 2007, 1773(3):375-382.
  • [49]Kim JK, Diehl JA: Nuclear cyclin D1: an oncogenic driver in human cancer. J Cell Physiol 2009, 220(2):292-296.
  • [50]Ruggero D: The role of Myc-induced protein synthesis in cancer. Cancer Res 2009, 69(23):8839-8843.
  • [51]Mady HH, Hasso S, Melhem MF: Expression of E2F-4 gene in colorectal adenocarcinoma and corresponding covering mucosa: an immunohistochemistry, image analysis, and immunoblot study. Appl Immunohistochem Mol Morphol 2002, 10(3):225-230.
  • [52]Sardet C, Vidal M, Cobrinik D, Geng Y, Onufryk C, Chen A, Weinberg RA: E2F-4 and E2F-5, two members of the E2F family, are expressed in the early phases of the cell cycle. Proc Natl Acad Sci U S A 1995, 92(6):2403-2407.
  文献评价指标  
  下载次数:72次 浏览次数:25次