期刊论文详细信息
BMC Microbiology
Sub-inhibitory concentrations of some antibiotics can drive diversification of Pseudomonas aeruginosa populations in artificial sputum medium
Craig Winstanley1  Michael A Brockhurst4  Steve Paterson3  Joanne L Fothergill2  Elli A Wright1 
[1] Institute of Infection and Global Health, University of Liverpool, The Ronald Ross Building, 8 West Derby Street, Liverpool, L69 7BE, UK;NIHR Biomedical Research Centre in Microbial Disease, University of Liverpool, Liverpool, UK;Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK;Department of Biology, University of York, York, YO10 5DD, UK
关键词: Pseudomonas aeruginosa;    Population biology;    Cystic fibrosis;    Antibiotics;   
Others  :  1143414
DOI  :  10.1186/1471-2180-13-170
 received in 2013-04-03, accepted in 2013-07-19,  发布年份 2013
PDF
【 摘 要 】

Background

Pseudomonas aeruginosa populations within the cystic fibrosis lung exhibit extensive phenotypic and genetic diversification. The resultant population diversity is thought to be crucial to the persistence of infection and may underpin the progression of disease. However, because cystic fibrosis lungs represent ecologically complex and hostile environments, the selective forces driving this diversification in vivo remain unclear. We took an experimental evolution approach to test the hypothesis that sub-inhibitory antibiotics can drive diversification of P. aeruginosa populations. Replicate populations of P. aeruginosa LESB58 were cultured for seven days in artificial sputum medium with and without sub-inhibitory concentrations of various clinically relevant antibiotics. We then characterised diversification with respect to 13 phenotypic and genotypic characteristics.

Results

We observed that higher population diversity evolved in the presence of azithromycin, ceftazidime or colistin relative to antibiotic-free controls. Divergence occurred due to alterations in antimicrobial susceptibility profiles following exposure to azithromycin, ceftazidime and colistin. Alterations in colony morphology and pyocyanin production were observed following exposure to ceftazidime and colistin only. Diversification was not observed in the presence of meropenem.

Conclusions

Our study indicates that certain antibiotics can promote population diversification when present in sub-inhibitory concentrations. Hence, the choice of antibiotic may have previously unforeseen implications for the development of P. aeruginosa infections in the lungs of cystic fibrosis patients.

【 授权许可】

   
2013 Wright et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329073533330.pdf 557KB PDF download
Figure 4. 75KB Image download
Figure 3. 97KB Image download
Figure 2. 79KB Image download
Figure 1. 60KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Teichgraber V, Ulrich M, Endlich N, Riethmuller J, Wilker B, De Oliveira-Munding CC, van Heeckeren AM, Barr ML, von Kürthy G, Schmid KW, Weller M, Tümmler B, Lang F, Grassme H, Döring G, Gulbins E: Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 2008, 14:382-391.
  • [2]Emerson J, Rosenfeld M, McNamara S, Ramsey B, Gibson RL: Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol 2002, 34:91-100.
  • [3]Hart CA, Winstanley C: Persistent and aggressive bacteria in the lungs of cystic fibrosis children. Br Med Bull 2002, 61:81-96.
  • [4]Koch C, Hoiby N: Pathogenesis of cystic fibrosis. Lancet 1993, 341:1065-1069.
  • [5]Chung JC, Becq J, Fraser L, Schulz-Trieglaff O, Bond NJ, Foweraker J, Bruce KD, Smith GP, Welch M: Genomic variation among contemporary Pseudomonas aeruginosa isolates from chronically-infected cystic fibrosis patients. J Bacteriol 2012, 194:4857-4866.
  • [6]Cramer N, Klockgether J, Wrasman K, Schmidt M, Davenport CF, Tummler B: Microevolution of the major common Pseudomonas aeruginosa clones C and PA14 in cystic fibrosis lungs. Environ Microbiol 2011, 13:1690-1704.
  • [7]Fothergill JL, Mowat E, Ledson MJ, Walshaw MJ, Winstanley C: Fluctuations in phenotypes and genotypes within populations of Pseudomonas aeruginosa in the cystic fibrosis lung during pulmonary exacerbations. J Med Microbiol 2010, 59:472-481.
  • [8]Fothergill JL, White J, Foweraker JE, Walshaw MJ, Ledson MJ, Mahenthiralingam E, Winstanley C: Impact of Pseudomonas aeruginosa genomic instability on the application of typing methods for chronic cystic fibrosis infections. J Clin Microbiol 2010, 48:2053-2059.
  • [9]Mowat E, Paterson S, Fothergill JL, Wright EA, Ledson MJ, Walshaw MJ, Brockhurst MA, Winstanley C: Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections. Am J Respir Crit Care Med 2011, 183:1674-1679.
  • [10]Ciofu O, Mandsberg LF, Bjarnsholt T, Wassermann T, Hoiby N: Genetic adaptation of Pseudomonas aeruginosa during chronic lung infection of patients with cystic fibrosis: strong and weak mutators with heterogeneous genetic backgrounds emerge in mucA and/or lasR mutants. Microbiology 2010, 156:1108-1119.
  • [11]D’Argenio DA, Wu M, Hoffman LR, Kulasekara HD, Deziel E, Smith EE, Nguyen H, Ernst RK, Larson Freeman TJ, Spencer DH, Brittnacher M, Hayden HS, Selgrade S, Klausen M, Goodlett DR, Burns JL, Ramsey BW, Miller SI: Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol Microbiol 2007, 64:512-533.
  • [12]Feliziani S, Lujan AM, Moyano AJ, Sola C, Bocco JL, Montanaro P, Canigia LF, Argaraña CE, Smania AM: Mucoidy, quorum sensing, mismatch repair and antibiotic resistance in Pseudomonas aeruginosa from cystic fibrosis chronic airways infections. PLoS One 2010, 5:e12669.13.
  • [13]Govan JR, Deretic V: Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 1996, 60:539-574.
  • [14]Hancock RE, Mutharia LM, Chan L, Darveau RP, Speert DP, Pier GB: Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. Infect Immun 1983, 42:170-177.
  • [15]Mahenthiralingam E, Campbell ME, Speert DP: Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 1994, 62:596-605.
  • [16]Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D’Argenio DA, Miller SI, Ramsey BW, Speert DP, Moskowitz SM, Burns JL, Kaul R, Olson MV: Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci USA 2006, 103:8487-8492.
  • [17]Yang L, Jelsbak L, Molin S: Microbial ecology and adaptation in cystic fibrosis airways. Environ Microbiol 2011, 13:1682-1689.
  • [18]Brown RK, Kelly FJ: Evidence for increased oxidative damage in patients with cystic fibrosis. Pediatr Res 1994, 36:487-493.
  • [19]Williams BJ, Dehnbostel J, Blackwell TS: Pseudomonas aeruginosa: host defence in lung diseases. Respirology 2010, 15:1037-1056.
  • [20]Bragonzi A, Paroni M, Nonis A, Cramer N, Montanari S, Rejman J, Di Serio C, Döring G, Tümmler B: Pseudomonas aeruginosa microevolution during cystic fibrosis lung infection establishes clones with adapted virulence. Am J Respir Crit Care Med 2009, 180:138-145.
  • [21]Heijerman H, Westerman E, Conway S, Touw D, Döring G: Consensus Working Group: Inhaled medication and inhalation devices for lung diseases in patients with cystic fibrosis: a European consensus. J Cyst Fibros 2009, 8:295-315.
  • [22]Fothergill JL, Walshaw MJ, Winstanley C: Transmissible strains of Pseudomonas aeruginosa in cystic fibrosis lung infections. Eur Respir J 2012, 40:227-238.
  • [23]Scott FW, Pitt TL: Identification and characterization of transmissible Pseudomonas aeruginosa strains in cystic fibrosis patients in England and Wales. J Med Microbiol 2004, 53:609-615.
  • [24]Aaron SD, Vandemheen KL, Ramotar K, Giesbrecht-Lewis T, Tullis E, Freitag A, Paterson N, Jackson M, Lougheed MD, Dowson C, Kumar V, Ferris W, Chan F, Doucette S, Fergusson D: Infection with transmissible strains of Pseudomonas aeruginosa and clinical outcomes in adults with cystic fibrosis. JAMA – J Am Med Assoc 2010, 304:2145-2153.
  • [25]Panagea S, Winstanley C, Parsons YN, Walshaw MJ, Ledson MJ, Hart CA: PCR-based detection of a cystic fibrosis epidemic strain of Pseudomonas aeruginosa. Mol Diagn 2003, 7:195-200.
  • [26]Al-Aloul M, Crawley J, Winstanley C, Hart CA, Ledson MJ, Walshaw MJ: Increased morbidity associated with chronic infection by an epidemic Pseudomonas aeruginosa strain in CF patients. Thorax 2004, 59:334-336.
  • [27]Ashish A, Shaw M, McShane J, Ledson MJ, Walshaw MJ: Health-related quality of life in Cystic Fibrosis patients infected with transmissible Pseudomonas aeruginosa strains: cohort study. JRSM Short Reports 2012, 3:12.
  • [28]Fung C, Naughton S, Turnbull L, Tingpej P, Rose B, Arthur J, Hu H, Harmer C, Harbour C, Hassett DJ, Whitchurch CB, Manos J: Gene expression of Pseudomonas aeruginosa in a mucin-containing synthetic growth medium mimicking cystic fibrosis lung sputum. J Med Microbiol 2010, 59:1089-1100.
  • [29]Garbe J, Wesche A, Bunk B, Kazmierczak M, Selezska K, Rohde C, Sikorski J, Rohde M, Jahn D, Schobert M: Characterization of JG024, a Pseudomonas aeruginosa PB1-like broad host range phage under simulated infection conditions. BMC Microbiol 2010, 10:301. BioMed Central Full Text
  • [30]Sriramulu DD, Lunsdorf H, Lam JS, Romling U: Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J Med Microbiol 2005, 54:667-676.
  • [31]Blazquez J, Gomez-Gomez JM, Oliver A, Juan C, Kapur V, Martin S: PBP3 inhibition elicits adaptive responses in Pseudomonas aeruginosa. Mol Microbiol 2006, 62:84-99.
  • [32]Perez-Capilla T, Baquero MR, Gomez-Gomez JM, Ionel A, Martin S, Blazquez J: SOS-independent induction of dinB transcription by beta-lactam-mediated inhibition of cell wall synthesis in Escherichia coli. J Bacteriol 2005, 187:1515-1518.
  • [33]Gutierrez A, Laureti L, Crussard S, Abida H, Rodríguez-Rojas A, Blázquez J, Baharoglu Z, Mazel D, Darfeuille F, Vogel J, Matic I: β-lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat Commun 2013, 4:1610.
  • [34]Wong A, Rodrigue N, Kassen R: Genomics of adaptation during experimental evolution of the opportunistic pathogen Pseudomonas aeruginosa. PLoS Genet 2012, 8:e1002928.
  • [35]Babić F, Venturi V, Maravić-Vlahovicek G: Tobramycin at subinhibitory concentration inhibits the RhlI/R quorum sensing system in a Pseudomonas aeruginosa environmental isolate. BMC Infect Dis 2010, 10:148. BioMed Central Full Text
  • [36]Kai T, Tateda K, Kimura S, Ishii Y, Ito H, Yoshida H, Kimura T, Yamaguchi K: A low concentration of azithromycin inhibits the mRNA expression of N-acyl homoserine lactone synthesis enzymes, upstream of lasI or rhlI, in Pseudomonas aeruginosa. Pulm Pharmacol Ther 2009, 22:483-486.
  • [37]Andrews JM, Howe RA: BSAC standardized disc susceptibility testing method (version 10). J Antimicrob Chemoth 2011, 66:2726-2757.
  • [38]Cummins J, Reen FJ, Baysse C, Mooij MJ, O’Gara F: Subinhibitory concentrations of the cationic antimicrobial peptide colistin induce the pseudomonas quinolone signal in Pseudomonas aeruginosa. Microbiology 2009, 155:2826-2837.
  • [39]Thi TD, Lopez E, Rodriguez-Rojas A, Rodriguez-Beltran J, Couce A, Guelfo JR, Castañeda-García A, Blázquez J: Effect of recA inactivation on mutagenesis of Escherichia coli exposed to sublethal concentrations of antimicrobials. J Antimicrob Chemoth 2011, 66:531-538.
  • [40]Boles BR, Singh PK: Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proc Natl Acad Sci USA 2008, 105:12503-12508.
  • [41]Driffield K, Miller K, Bostock JM, O’Neill AJ, Chopra I: Increased mutability of Pseudomonas aeruginosa in biofilms. J Antimicrob Chemoth 2008, 61:1053-1056.
  • [42]Ponder RG, Fonville NC, Rosenberg SM: A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation. Mol Cell 2005, 19:791-804.
  • [43]Miller JH: Spontaneous mutators in bacteria: insights into pathways of mutagenesis and repair. Annu Rev Microbiol 1996, 50:625-643.
  • [44]Lujan AM, Macia MD, Yang L, Molin S, Oliver A, Smania AM: Evolution and adaptation in Pseudomonas aeruginosa biofilms driven by mismatch repair system-deficient mutators. PLoS One 2011, 6:e27842.
  • [45]Oliver A, Canton R, Campo P, Baquero F, Blazquez J: High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 2000, 288:1251-1254.
  • [46]Boles BR, Thoendel M, Singh PK: Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci USA 2004, 101:16630-16635.
  • [47]Shen L, Shi Y, Zhang D, Wei J, Surette MG, Duan K: Modulation of secreted virulence factor genes by subinhibitory concentrations of antibiotics in Pseudomonas aeruginosa. J Microbiol 2008, 46:441-447.
  • [48]Skindersoe ME, Alhede M, Phipps R, Yang L, Jensen PO, Rasmussen TB, Bjarnsholt T, Tolker-Nielsen T, Høiby N, Givskov M: Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2008, 52:3648-3663.
  • [49]Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI: Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 2005, 436:1171-1175.
  • [50]Linares JF, Gustafsson I, Baquero F, Martinez JL: Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci USA 2006, 103:19484-19489.
  • [51]Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, Greenberg EP: Gene expression in Pseudomonas aeruginosa biofilms. Nature 2001, 413:860-864.
  • [52]Lujan AM, Moyano AJ, Segura I, Argarana CE, Smania AM: Quorum-sensing-deficient (lasR) mutants emerge at high frequency from a Pseudomonas aeruginosa mutS strain. Microbiology 2007, 153:225-237.
  • [53]Wilder CN, Allada G, Schuster M: Instantaneous within-patient diversity of Pseudomonas aeruginosa quorum-sensing populations from cystic fibrosis lung infections. Infect Immun 2009, 77:5631-5639.
  • [54]Winstanley C, Fothergill JL: The role of quorum sensing in chronic cystic fibrosis Pseudomonas aeruginosa infections. FEMS Microbiol Lett 2009, 290:1-9.
  • [55]Kirchner S, Fothergill JL, Wright EA, James CE, Mowat E, Winstanley C: Use of artificial sputum medium to test antibiotic efficacy against Pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung. J Vis Exp 2012, 64:e3857.
  • [56]Winstanley C, Langille MG, Fothergill JL, Kukavica-Ibrulj I, Paradis-Bleau C, Sanschagrin F, Thomson NR, Winsor GL, Quail MA, Lennard N, Bignell A, Clarke L, Seeger K, Saunders D, Harris D, Parkhill J, Hancock RE, Brinkman FS, Levesque RC: Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa. Genome Res 2009, 19:12-23.
  • [57]James C, Fothergill J, Kalwij H, Hall A, Cottell J, Brockhurst M, Winstanley C: Differential infection properties of three inducible prophages from an epidemic strain of Pseudomonas aeruginosa. BMC Microbiol 2012, 12:216. BioMed Central Full Text
  • [58]Hedges AJ: Estimating the precision of serial dilutions and viable bacterial counts. Int J Food Microbiol 2002, 76:207-214.
  • [59]Smart CH, Scott FW, Wright EA, Walshaw MJ, Hart CA, Pitt TL, Winstanley C: Development of a diagnostic test for the Midlands 1 cystic fibrosis epidemic strain of Pseudomonas aeruginosa. J Med Microbiol 2006, 55:1085-1091.
  • [60]Fothergill JL, Panagea S, Hart CA, Walshaw MJ, Pitt TL, Winstanley C: Widespread pyocyanin over-production among isolates of a cystic fibrosis epidemic strain. BMC Microbiol 2007, 7:45. BioMed Central Full Text
  • [61]eBURST V3. [http://eburst.mlst.net/ webcite]
  • [62]The R Project for Statistical Computing. [http://www.r-project.org/ webcite]
  文献评价指标  
  下载次数:37次 浏览次数:10次