科技报告详细信息
In-Situ Survival Mechanisms of U and Tc Reducing Bacteria in Contaminated Sediments
Krumholz, Lee R.
University of Oklahoma, Norman, OK
关键词: Oxidoreductases;    Genes;    Antibiotics;    54 Environmental Sciences;    Ecosystems;   
DOI  :  10.2172/893584
RP-ID  :  NABIR-1021951-2005
RP-ID  :  None
RP-ID  :  893584
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

Desulfovibrio desulfuricans G20 and Shewanella oneidensis MR-1 are model subsurface organisms for studying genes involving in situ radionuclide transformation and sediment survival. Our research objective for this project has been to develop a signature-tagged mutagenesis (STM) procedure and use it to identify mutants in genes of these subsurface bacteria involved in sediment survival and radionuclide reduction. The mutant genes identified in these studies allow us for the first time to describe at the genetic level microbial processes that are actually being used by environmental bacteria while growing in their natural ecosystems. Identification of these genes revealed facets of microbial physiology and ecology that are not accessible through laboratory studies. Ultimately, this information may be used to optimize bioremediation or other engineered microbial processes. Furthermore, the identification of a mutant in a gene conferring multidrug resistance in strain MR-1 shows that this widespread mechanism of antibiotic resistance, likely has its origins as a mechanism of bacterial defense against naturally occurring toxins. Studies with D. desulfuricans G20: The STM procedure first involved generating a library of 5760 G20 mutants and screening for potential non-survivors in subsurface sediment microcosms. After two rounds of screening, a total of 117 mutants were confirmed to be true non-survivors. 97 transposon insertion regions have been sequenced to date. Upon further analysis of these mutants, we classified the sediment survival genes into COG functional categories. STM mutant insertions were located in genes encoding proteins related to metabolism (33%), cellular processes (42%), and information storage and processing (17%). We also noted 8% of STM mutants identified had insertions in genes for hypothetical proteins or unknown functions. Interestingly, at least 64 of these genes encode cytoplasmic proteins, 46 encode inner membrane proteins, and only 7 encode periplasmic space and outer membrane associated proteins. Through blast search analysis, we also showed that 81 out of 94 proteins shown to be important in sediment survival have homologs in D. vulgaris, 70 have homologs in Geobacter metallireducens, and 69 have homologs in Geobacter sulfurreducens PCA. Some interesting proteins include ribonucleotide reductase and chemotaxis related proteins. Ribonucleotide reductase catalyzes the reductive synthesis of deoxyribonucleotides from their corresponding ribonucleotides, providing the precursors necessary for DNA synthesis. Two ribonucleotide reductase genes (nrdE, nrdD) were found to be essential for G20 survival in the sediment, but not essential for growth in the lactate-sulfate medium. Bacterial methyl-accepting chemotaxis proteins (MCP) respond to changes in the concentration of attractants and repellents in the environment.

【 预 览 】
附件列表
Files Size Format View
893584.pdf 21KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:38次