BMC Medicine | |
Central pathways causing fatigue in neuro-inflammatory and autoimmune illnesses | |
Michael Maes4  Ken Walder3  Michael Berk1  Gerwyn Morris2  | |
[1] Department of Psychiatry and The Florey Institute of Neuroscience and Mental Health, Orygen, The National Centre of Excellence in Youth Mental Health, The University of Melbourne, Parkville, Australia;Tir Na Nog, Bryn Road seaside 87, Llanelli SA152LW, Wales, UK;Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia;Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand | |
关键词: Parkinson’s disease; Chronic fatigue syndrome; Multiple sclerosis; Mitochondria; Fatigue; Toll-like receptor; Oxidative stress; Inflammation; Immune; | |
Others : 1122478 DOI : 10.1186/s12916-014-0259-2 |
|
received in 2014-11-19, accepted in 2014-12-17, 发布年份 2015 | |
【 摘 要 】
Background
The genesis of severe fatigue and disability in people following acute pathogen invasion involves the activation of Toll-like receptors followed by the upregulation of proinflammatory cytokines and the activation of microglia and astrocytes. Many patients suffering from neuroinflammatory and autoimmune diseases, such as multiple sclerosis, Parkinson’s disease and systemic lupus erythematosus, also commonly suffer from severe disabling fatigue. Such patients also present with chronic peripheral immune activation and systemic inflammation in the guise of elevated proinflammtory cytokines, oxidative stress and activated Toll-like receptors. This is also true of many patients presenting with severe, apparently idiopathic, fatigue accompanied by profound levels of physical and cognitive disability often afforded the non-specific diagnosis of chronic fatigue syndrome.
Discussion
Multiple lines of evidence demonstrate a positive association between the degree of peripheral immune activation, inflammation and oxidative stress, gray matter atrophy, glucose hypometabolism and cerebral hypoperfusion in illness, such as multiple sclerosis, Parkinson’s disease and chronic fatigue syndrome. Most, if not all, of these abnormalities can be explained by a reduction in the numbers and function of astrocytes secondary to peripheral immune activation and inflammation. This is also true of the widespread mitochondrial dysfunction seen in otherwise normal tissue in neuroinflammatory, neurodegenerative and autoimmune diseases and in many patients with disabling, apparently idiopathic, fatigue. Given the strong association between peripheral immune activation and neuroinflammation with the genesis of fatigue the latter group of patients should be examined using FLAIR magnetic resonance imaging (MRI) and tested for the presence of peripheral immune activation.
Summary
It is concluded that peripheral inflammation and immune activation, together with the subsequent activation of glial cells and mitochondrial damage, likely account for the severe levels of intractable fatigue and disability seen in many patients with neuroimmune and autoimmune diseases.This would also appear to be the case for many patients afforded a diagnosis of Chronic Fatigue Syndrome.
【 授权许可】
2015 Morris et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150214020232921.pdf | 1294KB | download | |
Fig. 1. | 58KB | Image | download |
Figure 2. | 75KB | Image | download |
Figure 1. | 31KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Fig. 1.
【 参考文献 】
- [1]Morris G, Anderson G, Galecki P, Berk M, Maes M: A narrative review on the similarities and dissimilarities between myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and sickness behavior. BMC Med 2013, 11:64.
- [2]Norheim K, Jonsson G, Omdal R: Biological mechanisms of chronic fatigue. Rheumatology 2011, 50:1009-1018.
- [3]Jialal I, Kaur H, Devaraj S: Toll-like receptor status in obesity and metabolic syndrome: a translational perspective. J Clin Endocrinol Metab 2014, 99:39-48.
- [4]Lucas K, Maes M: Role of the Toll Like receptor (TLR) radical cycle in chronic inflammation: possible treatments targeting the TLR4 pathway. Mol Neurobiol 2013, 48:190-204.
- [5]Fernandez-Gonzalo R, De Paz JA, Rodriguez-Miguelez P, Cuevas MJ, González-Gallego J: Effects of eccentric exercise on toll-like receptor 4 signaling pathway in peripheral blood mononuclear cells. J Appl Physiol 2012, 112:2011-2018.
- [6]Morris G, Maes M: A neuro-immune model of Myalgic Encephalomyelitis/Chronic fatigue syndrome. Metab Brain Dis 2013, 28:523-540.
- [7]Morris G, Maes M: Oxidative and nitrosative stress and immune-inflammatory pathways in patients with Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS). Curr Neuropharmacol 2014, 12:168-185.
- [8]Perry VH, Cunningham C, Boche D: Atypical inflammation in the central nervous system in prion disease. Curr Opin Neurol 2002, 15:349-354.
- [9]Perry VH: The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain Behav Immun 2004, 18:407-413.
- [10]Londoño D, Cadavid D: Bacterial lipoproteins can disseminate from the periphery to inflame the brain. Am J Pathol 2010, 176:2848-2857.
- [11]Perry VH: Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol 2010, 120:277-286.
- [12]Perry VH, Nicoll JA, Holmes C: Microglia in neurodegenerative disease. Nat Rev Neurol 2010, 6:193-201.
- [13]Mosley RL, Hutter-Saunders JA, Stone DK, Gendelman HE: Inflammation and adaptive immunity in Parkinson’s disease. Cold Spring Harb Perspect Med 2012, 2:a009381.
- [14]Holmes C, Cunningham C, Zotova E, Woolford J, Dean C, Kerr S, et al.: Systemic inflammation and disease progression in Alzheimer disease. Neurology 2009, 73:768-774.
- [15]Heesen C, Schulz KH, Fiehler J, Von der Mark U, Otte C, Jung R, et al.: Correlates of cognitive dysfunction in multiple sclerosis. Brain Behav Immun 2010, 24:1148-1155.
- [16]Arai H, Furuya T, Mizuno Y, Mochizuki H: Inflammation and infection in Parkinson’s disease. Histol Histopathol 2006, 21:673-678.
- [17]Morris G, Maes M: Myalgic encephalomyelitis/chronic fatigue syndrome and encephalomyelitis disseminata/multiple sclerosis show remarkable levels of similarity in phenomenology and neuroimmune characteristics. BMC Med 2013, 11:205.
- [18]Beiske AG, Svensson E: Fatigue in Parkinson’s disease: a short update. Acta Neurol Scand Suppl 2010, 190:78-81.
- [19]Berk M, Williams L, Jacka F, O’Neil A, Pasco J, Moylan S, et al.: So depression is an inflammatory disease, but where does the inflammation come from? BMC Med 2013, 11:200.
- [20]Maes M, Berk M, Goehler L, Song C, Anderson G, Galecki P, et al.: Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Med 2012, 10:66.
- [21]Kreisel T, Frank M, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, et al.: Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry 2014, 19:699-709.
- [22]Steiner J, Walter M, Gos T, Guillemin G, Bernstein H, Sarnyai Z, et al.: Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission. J Neuroinflammation 2011, 8:1-9.
- [23]Segal B, Thomas W, Rogers T, Leon JM, Hughes P, Patel D, et al.: Prevalence, severity, and predictors of fatigue in subjects with primary Sjögren’s syndrome. Arthritis Rheum 2008, 59:1780-1787.
- [24]Ahn GE, Ramsey-Goldman R: Fatigue in systemic lupus erythematosus. Int J Clin Rheumtol 2012, 7:217-227.
- [25]Hewlett S, Ambler N, Almeida C, Cliss A, Hammond A, Kitchen K, et al.: Self-management of fatigue in rheumatoid arthritis: a randomised controlled trial of group cognitive-behavioural therapy. Ann Rheum Dis 2011, 70:1060-1067.
- [26]Sattar N, McCarey D, Capell H, McInnes I: Explaining how a “high-grade” systemic inflammation accelerates vascular risk in rheumatoid arthritis. Circulation 2003, 108:2957-2963.
- [27]Ku I, Imboden J, Hsue P, Ganz P: Rheumatoid arthritis: model of systemic inflammation driving atherosclerosis. Circ J 2009, 73:977-985.
- [28]Munoz L, Janko C, Grossmayer G, Frey B, Voll R, Kern P, et al.: Remnants of secondarily necrotic cells fuel inflammation in systemic lupus erythematosus. Arthritis Rheum 2009, 60:1733-1742.
- [29]Lee HM, Sugino H, Nishimoto N: Cytokine networks in systemic lupus erythematosus. J Biomed Biotechnol 2010, 2010:676284.
- [30]Sisto M, Lisi S, Ingravallo G, Lofrumento D, D’Amore M, Ribatti D: Neovascularization is prominent in the chronic inflammatory lesions of Sjögren’s syndrome. Int J Exp Pathol 2014, 95:131-137.
- [31]Lisi S, Sisto M, D’Amore M, Lofrumento D, Ribatti D: Emerging avenues linking inflammation, angiogenesis and Sjögren’s syndrome. Cytokine 2013, 61:693-703.
- [32]Muscal E, Brey R: Neurological manifestations of systemic lupus erythematosus in children and adults. Neurol Clin 2010, 28:61-73.
- [33]Tobón G, Pers J, Devauchelle-Pensec V, Youinou P: Neurological disorders in primary Sjögren’s syndrome. Autoimmune Dis 2012, 2012:645967.
- [34]Meszaros Z, Perl A, Faraone S: Psychiatric symptoms in systemic lupus erythematosus: a systematic review. J Clin Psychiatry 2012, 73:993-1001.
- [35]Ramos-Remus C, Duran-Barragan S, Castillo-Ortiz J: Beyond the joints: neurological involvement in rheumatoid arthritis. Clin Rheumatol 2012, 31:1-12.
- [36]Alvarez-Lafuente R, De las Heras V, Bartolomé M, Picazo JJ, Arroyo R: Relapsing-remitting multiple sclerosis and human herpesvirus 6 active infection. Arch Neurol 2004, 61:1523-1527.
- [37]Akhyani N, Berti R, Brennan MB, Soldan SS, Eaton JM, McFarland HF, et al.: Tissue distribution and variant characterization of human herpesvirus (HHV)-6: increased prevalence of HHV-6A in patients with multiple sclerosis. J Infect Dis 2000, 182:1321-1325.
- [38]Goldman S: Environmental toxins and Parkinson’s disease. Annu Rev Pharmacol Toxicol 2014, 54:141-164.
- [39]Khansari N, Shakiba Y, Mahmoudi M: Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat Inflamm Allergy Drug Discov 2009, 3:73-80.
- [40]Tabruyn SP, Mémet S, Avé P, Verhaeghe C, Mayo KH, Struman I, et al.: NF-kappaB activation in endothelial cells is critical for the activity of angiostatic agents. Mol Cancer Ther 2009, 8:2645-2654.
- [41]Schmidt C, Peng B, Li Z, Sclabas GM, Fujioka S, Niu J, et al.: Mechanisms of proinflammatory cytokine-induced biphasic NF-kappaB activation. Mol Cell 2003, 12:1287-1300.
- [42]Sultani M, Stringer AM, Bowen JM, Gibson RJ: Anti-inflammatory cytokines: important immunoregulatory factors contributing to chemotherapy-induced gastrointestinal mucositis. Chemother Res Pract 2012, 2012:490804.
- [43]Nakata S, Tsutsui M, Shimokawa H, Yamashita T, Tanimoto A, Tasaki H, et al.: Statin treatment upregulates vascular neuronal nitric oxide synthase through Akt/NF-kappaB pathway. Arterioscler Thromb Vasc Biol 2007, 27:92-98.
- [44]Anrather J, Racchumi G, Iadecola C: NF-kappaB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J Biol Chem 2006, 281:5657-5667.
- [45]Sonis ST: Pathobiology of oral mucositis: novel insights and opportunities. J Support Oncol 2007, 5:3-11.
- [46]Sonis ST: A biological approach to mucositis. J Support Oncol 2004, 2:21-32. discussion 35-6
- [47]Morgan MJ, Liu ZG: Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 2011, 21:103-115.
- [48]Maes M, Kubera M, Obuchowiczwa E, Goehler L, Brzeszcz J: Depression’s multiple comorbidities explained by (neuro)inflammatory and oxidative & nitrosative stress pathways. Neuro Endocrinol Lett 2011, 32:7-24.
- [49]Maes M, Mihaylova I, Leunis JC: Chronic fatigue syndrome is accompanied by an IgM-related immune response directed against neopitopes formed by oxidative or nitrosative damage to lipids and proteins. Neuro Endocrinol Lett 2006, 27:615-621.
- [50]Kuper H, Adami HO, Trichopoulos D: Infections as a major preventable cause of human cancer. J Intern Med 2000, 248:171-183.
- [51]Miranda-Hernandez S, Baxter AG: Role of toll-like receptors in multiple sclerosis. Am J Clin Exp Immunol 2013, 2:75-93.
- [52]Horton C, Pan Z, Farris A. Targeting Toll-like receptors for treatment of SLE. Mediators Inflamm. 2010; 2010. doi:10.1155/2010/498980.
- [53]Mahad DJ, Ziabreva I, Campbell G, Lax N, White K, Hanson PS, et al.: Mitochondrial changes within axons in multiple sclerosis. Brain 2009, 132:1161-1174.
- [54]Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, et al.: Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 2006, 59:478-489.
- [55]Lazzarino G, Amorini AM, Eikelenboom MJ, Killestein J, Belli A, Di Pietro V, et al.: Cerebrospinal fluid ATP metabolites in multiple sclerosis. Mult Scler 2010, 16:549-554.
- [56]Morris G, Maes M: Mitochondrial dysfunctions in myalgic encephalomyelitis/chronic fatigue syndrome explained by activated immuno-inflammatory, oxidative and nitrosative stress pathways. Metab Brain Dis 2014, 29:19-36.
- [57]Booth NE, Myhill S, McLaren-Howard J: Mitochondrial dysfunction and the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Int J Clin Exp Med 2012, 5:208-220.
- [58]Myhill S, Booth NE, McLaren-Howard J: Targeting mitochondrial dysfunction in the treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) - a clinical audit. Int J Clin Exp Med 2013, 6:1-15.
- [59]Behan WM, McDonald M, Darlington LG, Stone TW: Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl. Br J Pharmacol 1999, 128:1754-1760.
- [60]Jones DE, Hollingsworth KG, Taylor R, Blamire AM, Newton JL: Abnormalities in pH handling by peripheral muscle and potential regulation by the autonomic nervous system in chronic fatigue syndrome. J Intern Med 2010, 267:394-401.
- [61]Hollingsworth KG, Jones DE, Taylor R, Blamire AM, Newton JL: Impaired cardiovascular response to standing in chronic fatigue syndrome. Eur J Clin Invest 2010, 40:608-615.
- [62]Parker WD Jr, Parks JK, Swerdlow RH: Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res 2008, 1189:215-218.
- [63]Blake C, Spitz E, Leehey M, Hoffer B, Boyson S: Platelet mitochondrial respiratory chain function in Parkinson’s disease. Mov Disord 1997, 12:3-8.
- [64]Shinde S, Pasupathy K: Respiratory-chain enzyme activities in isolated mitochondria of lymphocytes from patients with Parkinson’s disease: preliminary study. Neurol India 2006, 54:390-393.
- [65]Tobe EH: Mitochondrial dysfunction, oxidative stress, and major depressive disorder. Neuropsychiatr Dis Treat 2013, 9:567-573.
- [66]Manji H, Kato T, Di Prospero NA, Ness S, Beal MF, Krams M, et al.: Impaired mitochondrial function in psychiatric disorders. Nat Rev Neurosci 2012, 13:293-307.
- [67]Perl A, Hanczko R, Doherty E: Assessment of mitochondrial dysfunction in lymphocytes of patients with systemic lupus erythematosus. Methods Mol Biol 2012, 900:61-89.
- [68]Perl A, Nagy G, Gergely P, Puskas F, Qian Y, Banki K: Apoptosis and mitochondrial dysfunction in lymphocytes of patients with systemic lupus erythematosus. Methods Mol Med 2004, 102:87-114.
- [69]Nagy G, Koncz A, Fernandez D, Perl A: Nitric oxide, mitochondrial hyperpolarization, and T cell activation. Free Radic Biol Med 2007, 42:1625-1631.
- [70]Pagano G, Castello G, Pallardó FV: Sjøgren’s syndrome-associated oxidative stress and mitochondrial dysfunction: prospects for chemoprevention trials. Free Radic Res 2013, 47:71-73.
- [71]Cillero-Pastor B, Eijkel GB, Kiss A, Blanco FJ, Heeren RM: Matrix-assisted laser desorption ionization-imaging mass spectrometry: a new methodology to study human osteoarthritic cartilage. Arthritis Rheum 2013, 65:710-720.
- [72]Abramson SB: Nitric oxide in inflammation and pain associated with osteoarthritis. Arthritis Res Ther 2008, 10:S2.
- [73]Rose S, Frye RE, Slattery J, Wynne R, Tippett M, Melnyk S, et al.: Oxidative stress induces mitochondrial dysfunction in a subset of autistic lymphoblastoid cell lines. Transl Psychiatry 2014, 4:e377.
- [74]Imaizumi Y, Okada Y, Akamatsu W, Koike M, Kuzumaki N, Hayakawa H, et al.: Mitochondrial dysfunction associated with increased oxidative stress and α-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue. Mol Brain 2012, 5:35.
- [75]Cui H, Kong Y, Zhang H: Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct 2012, 2012:646354.
- [76]Lapierre Y, Hum S: Treating fatigue. Int MS J 2007, 14:64-71.
- [77]Bakshi R: Fatigue associated with multiple sclerosis: diagnosis, impact and management. Mult Scler 2003, 9:219-227.
- [78]Patrick E, Christodoulou C, Krupp LB: New York State MS Consortium: Longitudinal correlates of fatigue in multiple sclerosis. Mult Scler 2009, 15:258-261.
- [79]Flachenecker P, Kümpfel T, Kallmann B, Gottschalk M, Grauer O, Rieckmann P, et al.: Fatigue in multiple sclerosis: a comparison of different rating scales and correlation to clinical parameters. Mult Scler 2002, 8:523-526.
- [80]Iriarte J, Subira ML, Castro P: Modalities of fatigue in multiple sclerosis: correlation with clinical and biological factors. Mult Scler 2000, 6:124-130.
- [81]Tellez N, Rio J, Tintoré M, Nos C, Galán I, Montalban X: Does the Modified Fatigue Impact Scale offer a more comprehensive assessment of fatigue in MS? Mult Scler 2005, 11:198-202.
- [82]Ortiz GG, Pacheco-Moisés FP, Bitzer-Quintero OK, Ramírez-Anguiano AC, Flores-Alvarado LJ, Ramírez-Ramírez V, et al.: Immunology and oxidative stress in multiple sclerosis: clinical and basic approach. Clin Dev Immunol 2013, 2013:708659.
- [83]Nakamura M, Matsuoka T, Chihara N, Miyake S, Sato W, Araki M, et al.: Differential effects of fingolimod on B-cell populations in multiple sclerosis. Mult Scler 2014, 20:1371-1380.
- [84]Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, et al.: B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 2008, 358:676-688.
- [85]Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, et al.: A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 2006, 354:899-910.
- [86]Romme Christensen J, Börnsen L, Hesse D, Krakauer M, Sørensen PS, Søndergaard HB, et al.: Cellular sources of dysregulated cytokines in relapsing-remitting multiple sclerosis. J Neuroinflammation 2012, 9:215.
- [87]Beck J, Rondot P, Catinot L, Falcoff E, Kirchner H, Wietzerbin J: Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: do cytokines trigger off exacerbations. Acta Neurol Scand 1988, 78:318-323.
- [88]Maimone D, Gregory S, Arnason BG, Reder AT: Cytokine levels in the cerebrospinal fluid and serum of patients with multiple sclerosis. J Neuroimmunol 1991, 32:67-74.
- [89]Navikas V, Link H: Review: cytokines and the pathogenesis of multiple sclerosis. J Neurosci Res 1996, 45:322-333.
- [90]Gold SM, Krüger S, Ziegler KJ, Krieger T, Schulz KH, Otte C, et al.: Endocrine and immune substrates of depressive symptoms and fatigue in multiple sclerosis patients with comorbid major depression. J Neurol Neurosurg Psychiatry 2011, 82:814-818.
- [91]Heesen C, Nawrath L, Reich C, Bauer N, Schulz KH, Gold SM: Fatigue in multiple sclerosis: an example of cytokine mediated sickness behaviour? J Neurol Neurosurg Psychiatry 2006, 77:34-39.
- [92]Flachenecker P, Bihler I, Weber F, Gottschalk M, Toyka KV, Rieckmann P: Cytokine mRNA expression in patients with multiple sclerosis and fatigue. Mult Scler 2004, 10:165-169.
- [93]Nagyoszi P, Wilhelm I, Farkas AE, Fazakas C, Dung NT, Haskó J, et al.: Expression and regulation of toll-like receptors in cerebral endothelial cells. Neurochem Int 2010, 57:556-564.
- [94]Andersson A, Covacu R, Sunnemark D, Danilov AI, Dal Bianco A, Khademi M, et al.: Pivotal advance: HMGB1 expression in active lesions of human and experimental multiple sclerosis. J Leukoc Biol 2008, 84:1248-1255.
- [95]Bsibsi M, Ravid R, Gveric D, van Noort JM: Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 2002, 61:1013-1021.
- [96]Gironi M, Borgiani B, Mariani E, Cursano C, Mendozzi L, Cavarretta R, et al.: Oxidative stress is differentially present in multiple sclerosis courses, early evident, and unrelated to treatment. J Immunol Res 2014, 2014:961863.
- [97]Miller E, Walczak A, Saluk J, Ponczek MB, Majsterek I: Oxidative modification of patient’s plasma proteins and its role in pathogenesis of multiple sclerosis. Clin Biochem 2012, 45:26-30.
- [98]Gonsette RE: Neurodegeneration in multiple sclerosis: the role of oxidative stress and excitotoxicity. J Neurol Sci 2008, 274:48-53.
- [99]Stavropoulou C, Zachaki S, Alexoudi A, Chatzi I, Georgakakos VN, Terzoudi GI, et al.: The C609T inborn polymorphism in NAD(P)H:quinone oxidoreductase 1 is associated with susceptibility to multiple sclerosis and affects the risk of development of the primary progressive form of the disease. Free Radic Biol Med 2011, 51:713-718.
- [100]Fiorini A, Koudriavtseva T, Bucaj E, Coccia R, Foppoli C, Giorgi A, et al.: Involvement of oxidative stress in occurrence of relapses in multiple sclerosis: the spectrum of oxidatively modified serum proteins detected by proteomics and redox proteomics analysis. PLoS One 2013, 8:e65184.
- [101]Oliveira SR, Kallaur AP, Simão AN, Morimoto HK, Lopes J, Panis C, et al.: Oxidative stress in multiple sclerosis patients in clinical remission: association with the expanded disability status scale. J Neurol Sci 2012, 321:49-53.
- [102]Ljubisavljevic S, Stojanovic I, Cvetkovic T, Vojinovic S, Stojanov D, Stojanovic D, et al.: Erythrocytes’ antioxidative capacity as a potential marker of oxidative stress intensity in neuroinflammation. J Neurol Sci 2014, 337:8-13.
- [103]Centonze D, Muzio L, Rossi S, Cavasinni F, De Chiara V, Bergami A, et al.: Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J Neurosci 2009, 29:3442-3452.
- [104]Lu F, Selak M, O’Connor J, Croul S, Lorenzana C, Butunoi C, et al.: Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J Neurol Sci 2000, 177:95-103.
- [105]Mahad D, Lassmann H, Turnbull D: Review: mitochondria and disease progression in multiple sclerosis. Neuropathol Appl Neurobiol 2008, 34:577-589.
- [106]Reinke S, Broadhurst D, Sykes B, Baker G, Catz I, Warren K, et al.: Metabolomic profiling in multiple sclerosis: insights into biomarkers and pathogenesis. Mult Scler 2014, 20:1396-1400.
- [107]Lutz NW, Viola A, Malikova I, Confort-Gouny S, Audoin B, Ranjeva JP, et al.: Inflammatory multiple-sclerosis plaques generate characteristic metabolic profiles in cerebrospinal fluid. PLoS One 2007, 2:e595.
- [108]Lutz NW, Cozzone PJ: Metabolic profiling in multiple sclerosis and other disorders by quantitative analysis of cerebrospinal fluid using nuclear magnetic resonance spectroscopy. Curr Pharm Biotechnol 2011, 12:1016-1025.
- [109]Genova H, Rajagopalan V, DeLuca J, Das A, Binder A, Arjunan A, et al.: Examination of cognitive fatigue in multiple sclerosis using functional magnetic resonance imaging and diffusion tensor imaging. PLos One 2013, 8:78811.
- [110]Kohl AD, Wylie GR, Genova HM, Hillary FG, Deluca J: The neural correlates of cognitive fatigue in traumatic brain injury using functional MRI. Brain Inj 2009, 23:420-432.
- [111]DeLuca J, Genova H, Capili E, Wylie G: Functional neuroimaging of fatigue. Phys Med Rehabil Clin N Am 2009, 20:325-337.
- [112]Chaudhuri A, Behan PO: Fatigue in neurological disorders. Lancet 2004, 363:978-988.
- [113]Messina S, Patti F: Gray matters in multiple sclerosis: cognitive impairment and structural MRI. Mult Scler Int 2014, 2014:609694.
- [114]Filippi M, Rocca M: MR imaging of gray matter involvement in multiple sclerosis: implications for understanding disease pathophysiology and monitoring treatment efficacy. AJNR Am J Neuroradiol 2010, 31:1171-1177.
- [115]Ceccarelli A, Rocca M, Pagani E, Colombo B, Martinelli V, Comi G, et al.: A voxel-based morphometry study of grey matter loss in MS patients with different clinical phenotypes. Neuroimage 2008, 42:315-322.
- [116]Henry R, Shieh M, Okuda D, Evangelista A, Gorno-Tempini M, Pelletier D: Regional grey matter atrophy in clinically isolated syndromes at presentation. J Neurol Neurosurg Psychiatry 2008, 79:1236-1244.
- [117]Dalton C, Chard D, Davies G, Miszkiel K, Altmann D, Fernando K, et al.: Early development of multiple sclerosis is associated with progressive grey matter atrophy in patients presenting with clinically isolated syndromes. Brain 2004, 127:1101-1107.
- [118]Schutzer S, Angel T, Liu T, Schepmoes A, Xie F, Bergquist J, et al.: Gray matter is targeted in first-attack multiple sclerosis. PLoS One 2013, 8:66117.
- [119]Inglese M, Oesingmann N, Casaccia P, Fleysher L: Progressive multiple sclerosis and gray matter pathology: an MRI perspective. Mt Sinai J Med 2011, 78:258-267.
- [120]Horakova D, Kalincik T, Dusankova J, Dolezal O: Clinical correlates of grey matter pathology in multiple sclerosis. BMC Neurol 2012, 12:10.
- [121]Debernard L, Melzer T, Van Stockum S, Graham C, Wheeler-Kingshott C, Dalrymple-Alford J, et al.: Reduced grey matter perfusion without volume loss in early relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 2013, 85:544-551.
- [122]Calabrese M, Agosta F, Rinaldi F, Mattisi I, Grossi P, Favaretto A, et al.: Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis. Arch Neurol 2009, 66:1144-1150.
- [123]Damasceno A, Damasceno B, Cendes F: Cerebellar and brain gray-matter damage predicts fatigue in multiple sclerosis (P6. 120). Neurology 2014, 82:6-120.
- [124]Pellicano C, Gallo A, Li X, Ikonomidou VN, Evangelou IE, Ohayon JM, et al.: Relationship of cortical atrophy to fatigue in patients with multiple sclerosis. Arch Neurol 2010, 67:447-453.
- [125]Inglese M, Park S, Johnson G, Babb J, Miles L, Jaggi H, et al.: Deep gray matter perfusion in multiple sclerosis: dynamic susceptibility contrast perfusion magnetic resonance imaging at 3 T. Arch Neurol 2007, 64:196-202.
- [126]Tedeschi G, Dinacci D, Lavorgna L, Prinster A, Savettieri G, Quattrone A, et al.: Correlation between fatigue and brain atrophy and lesion load in multiple sclerosis patients independent of disability. J Neurol Sci 2007, 263:15-19.
- [127]Roelcke U, Kappos L, Lechner-Scott J, Brunnschweiler H, Huber S, Ammann W, et al.: Reduced glucose metabolism in the frontal cortex and basal ganglia of multiple sclerosis patients with fatigue: a 18 F-fluorodeoxyglucose positron emission tomography study. Neurology 1997, 48:1566-1571.
- [128]Bakshi R, Miletich RS, Kinkel PR, Emmet ML, Kinkel WR: High-resolution fluorodeoxyglucose positron emission tomography shows both global and regional cerebral hypometabolism in multiple sclerosis. J Neuroimaging 1998, 8:228-234.
- [129]Blinkenberg M, Rune K, Jensen CV, Ravnborg M, Kyllingsbaek S, Holm S, et al.: Cortical cerebral metabolism correlates with MRI lesion load and cognitive dysfunction in MS. Neurology 2000, 54:558-564.
- [130]Tellez N, Alonso J, Rio J, Tintore M, Nos C, Montalban X, et al.: The basal ganglia: a substrate for fatigue in multiple sclerosis. Neuroradiology 2008, 50:17-23.
- [131]Calabrese M, Rinaldi F, Grossi P, Mattisi I, Bernardi V, Favaretto A, et al.: Basal ganglia and frontal/parietal cortical atrophy is associated with fatigue in relapsing–remitting multiple sclerosis. Mult Scler 2010, 16:1220-1228.
- [132]Moreno M, Guo F, Ko E, Bannerman P, Soulika A, Pleasure D: Origins and significance of astrogliosis in the multiple sclerosis model, MOG peptide EAE. J Neurol Sci 2013, 333:55-59.
- [133]Brosnan C: Characteristics of a reactive astrogliosis in multiple sclerosis. Revista Espanola De Esclerosis Multiple 2013, 28:10-18. Available at: http://www.revistaesclerosis.es/pdf/partes/v5_28dic13_02.pdf
- [134]Hostenbach S, Cambron M, D’haeseleer M, Kooijman R, De Keyser J: Astrocyte loss and astrogliosis in neuroinflammatory disorders. Neurosci Lett 2014, 565:39-41.
- [135]Oberheim N, Goldman S, Nedergaard M: Heterogeneity of astrocytic form and function. Methods Mol Biol 2012, 814:23-45.
- [136]Stobart J, Anderson C: Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Front Cell Neurosci 2013, 7:38.
- [137]Sofroniew M, Vinters H: Astrocytes: biology and pathology. Acta Neuropathol 2010, 119:7-35.
- [138]Haider L, Simeonidou C, Steinberger G, Hametner S, Grigoriadis N, Deretzi G, et al.: Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron. J Neurol Neurosurg Psychiatry 2014, 85:1386-1395.
- [139]Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komaroff A: The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann Intern Med 1994, 121:953-959.
- [140]Morris G, Maes M: Case definitions and diagnostic criteria for Myalgic Encephalomyelitis and Chronic fatigue Syndrome: from clinical-consensus to evidence-based case definitions. Neuro Endocrinol Lett 2013, 34:185-199.
- [141]Holmes GP, Kaplan JE, Gantz NM, Komaroff AL, Schonberger LB, Straus SE, et al.: Chronic fatigue syndrome: a working case definition. Ann Intern Med 1988, 108:387-389.
- [142]Lorusso L, Mikhaylova SV, Capelli E, Ferrari D, Ngonga GK, Ricevuti G: Immunological aspects of chronic fatigue syndrome. Autoimmun Rev 2009, 8:287-291.
- [143]Klimas NG, Salvato FR, Morgan R, Fletcher MA: Immunologic abnormalities in chronic fatigue syndrome. J Clin Microbiol 1990, 28:1403-1410.
- [144]Maes M, Twisk FN, Kubera M, Ringel K: Evidence for inflammation and activation of cell-mediated immunity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): increased interleukin-1, tumor necrosis factor-α, PMN-elastase, lysozyme and neopteri. J Affect Disord 2012, 136:933-939.
- [145]Maher KJ, Klimas NG, Fletcher MA: Chronic fatigue syndrome is associated with diminished intracellular perforin. Clin Exp Immunol 2005, 142:505-511.
- [146]Broderick G, Fuite J, Kreitz A, Vernon SD, Klimas N, Fletcher MA: A formal analysis of cytokine networks in chronic fatigue syndrome. Brain Behav Immun 2010, 24:1209-1217.
- [147]Brenu EW, van Driel ML, Staines DR, Ashton KJ, Hardcastle SL, Keane J, et al.: Longitudinal investigation of natural killer cells and cytokines in chronic fatigue syndrome/myalgic encephalomyelitis. J Transl Med 2012, 10:88.
- [148]Brenu EW, van Driel ML, Staines DR, Ashton KJ, Ramos SB, Keane J, et al.: Immunological abnormalities as potential biomarkers in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. J Transl Med 2011, 9:81.
- [149]Moss RB, Mercandetti A, Vojdani A: TNF-alpha and chronic fatigue syndrome. J Clin Immunol 1999, 19:314-316.
- [150]Borish L, Schmaling K, DiClementi JD, Streib J, Negri J, Jones JF: Chronic fatigue syndrome: identification of distinct subgroups on the basis of allergy and psychologic variables. J Allergy Clin Immunol 1998, 102:222-230.
- [151]Patarca R, Klimas N, Lugtendorf S, Antoni M, Fletcher M: Dysregulated expression of tumor necrosis factor in chronic fatigue syndrome: interrelations with cellular sources and patterns of soluble immune mediator expression. Clin Infect Dis 1994, 18:S147-S153.
- [152]Light AR, White AT, Hughen RW, Light KC: Moderate exercise increases expression for sensory, adrenergic, and immune genes in chronic fatigue syndrome patients but not in normal subjects. J Pain 2009, 10:1099-1112.
- [153]White AT, Light AR, Hughen RW, Vanhaitsma TA, Light KC: Differences in metabolite-detecting, adrenergic, and immune gene expression after moderate exercise in patients with chronic fatigue syndrome, patients with multiple sclerosis, and healthy controls. Psychosom Med 2012, 74:46-54.
- [154]Gow JW, Hagan S, Herzyk P, Cannon C, Behan PO, Chaudhuri A: A gene signature for post-infectious chronic fatigue syndrome. BMC Med Genomics 2009, 2:38.
- [155]Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E: Increased 8-hydroxy-deoxyguanosine, a marker of oxidative damage to DNA, in major depression and myalgic encephalomyelitis/chronic fatigue syndrome. Neuro Endocrinol Lett 2009, 30:715-722.
- [156]Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E: Coenzyme Q10 deficiency in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is related to fatigue, autonomic and neurocognitive symptoms and is another risk factor explaining the early mortality in ME/CFS due to cardiovascular disorder. Neuro Endocrinol Lett 2009, 30:470-476.
- [157]Maes M, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E: Increased plasma peroxides as a marker of oxidative stress in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Med Sci Monit 2011, 17:SC11-SC15.
- [158]Kennedy G, Spence VA, McLaren M, Hill A, Underwood C, Belch JJ: Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms. Free Radic Biol Med 2005, 39:584-589.
- [159]Shungu DC, Weiduschat N, Murrough JW, Mao X, Pillemer S, Dyke JP, et al.: Increased ventricular lactate in chronic fatigue syndrome. III. Relationships to cortical glutathione and clinical symptoms implicate oxidative stress in disorder pathophysiology. NMR Biomed 2012, 25:1073-1087.
- [160]Miwa K, Fujita M: Fluctuation of serum vitamin E (alpha-tocopherol) concentrations during exacerbation and remission phases in patients with chronic fatigue syndrome. Heart Vessels 2010, 25:319-323.
- [161]Fulle S, Pietrangelo T, Mancinelli R, Saggini R, Fanò G: Specific correlations between muscle oxidative stress and chronic fatigue syndrome: a working hypothesis. J Muscle Res Cell Motil 2007, 28:355-362.
- [162]Myhill S, Booth NE, McLaren-Howard J: Chronic fatigue syndrome and mitochondrial dysfunction. Int J Clin Exp Med 2009, 2:1-16.
- [163]Behan WM, More IA, Downie I, Gow JW: Mitochondrial studies in the chronic fatigue syndrome. EOS Riv Immunol Immunofarmacol 1995, 15:36-39.
- [164]McCully KK, Natelson BH: Impaired oxygen delivery to muscle in chronic fatigue syndrome. Clin Sci (Lond) 1999, 97:603-608. discussion 611-613
- [165]McCully KK, Natelson BH, Iotti S, Sisto S, Leigh JS Jr: Reduced oxidative muscle metabolism in chronic fatigue syndrome. Muscle Nerve 1996, 19:621-625.
- [166]Wong R, Lopaschuk G, Zhu G, Walker D, Catellier D, Burton D, et al.: Skeletal muscle metabolism in the chronic fatigue syndrome. In vivo assessment by 31P nuclear magnetic resonance spectroscopy. Chest 1992, 102:1716-1722.
- [167]Arnold DL, Bore PJ, Radda GK, Styles P, Taylor DJ: Excessive intracellular acidosis of skeletal muscle on exercise in a patient with a post-viral exhaustion/fatigue syndrome. A 31P nuclear magnetic resonance study. Lancet 1984, 1:1367-1369.
- [168]Lane RJ, Soteriou BA, Zhang H, Archard LC: Enterovirus related metabolic myopathy: a postviral fatigue syndrome. J Neurol Neurosurg Psychiatry 2003, 74:1382-1386.
- [169]Filler K, Lyon D, Bennett J, McCain N, Elswisk R, Lukkahatai N, et al.: Association of mitochondrial dysfunction and fatigue: a review of the literature. BBA Clin 2014, 1:12-23.
- [170]Vermeulen RC, Kurk RM, Visser FC, Sluiter W, Scholte HR: Patients with chronic fatigue syndrome performed worse than controls in a controlled repeated exercise study despite a normal oxidative phosphorylation capacity. J Transl Med 2010, 8:93.
- [171]Vermeulen RC, Vermeulen van Eck IW: Decreased oxygen extraction during cardiopulmonary exercise test in patients with chronic fatigue syndrome. J Transl Med 2014, 12:20.
- [172]Mathew SJ, Mao X, Keegan KA, Levine SM, Smith EL, Heier LA, et al.: Ventricular cerebrospinal fluid lactate is increased in chronic fatigue syndrome compared with generalized anxiety disorder: an in vivo 3.0 T (1)H MRS imaging study. NMR Biomed 2009, 22:251-258.
- [173]Murrough JW, Mao X, Collins KA, Kelly C, Andrade G, Nestadt P, et al.: Increased ventricular lactate in chronic fatigue syndrome measured by 1H MRS imaging at 3.0 T. II: comparison with major depressive disorder. NMR Biomed 2010, 23:643-650.
- [174]Yoshiuchi K, Farkas J, Natelson B: Patients with chronic fatigue syndrome have reduced absolute cortical blood flow. Clin Physiol Funct Imaging 2006, 26:83-86.
- [175]Machale S, Lawrie S, Cavanagh JT, Glabus MF, Murray CL, Goodwin GM, et al.: Cerebral perfusion in chronic fatigue syndrome and depression. Br J Psychiatry 2000, 176:550-556.
- [176]Ichise M, Salit IE, Abbey SE, Chung DG, Gray B, Kirsh JC, et al.: Assessment of regional cerebral perfusion by 99Tcm-HMPAO SPECT in chronic fatigue syndrome. Nucl Med Commun 1992, 13:767-772.
- [177]de Lange FP, Kalkman JS, Bleijenberg G, Hagoort P, van der Meer JW, Toni I: Gray matter volume reduction in the chronic fatigue syndrome. Neuroimage 2005, 26:777-781.
- [178]de Lange FP, Koers A, Kalkman JS, Bleijenberg G, Hagoort P, van der Meer JW, et al.: Increase in prefrontal cortical volume following cognitive behavioural therapy in patients with chronic fatigue syndrome. Brain 2008, 131:2172-2180.
- [179]Okada T, Tanaka M, Kuratsune H, Watanabe Y, Sadato N: Mechanisms underlying fatigue: a voxel-based morphometric study of chronic fatigue syndrome. BMC Neurol 2004, 4:14.
- [180]Kuchinad A, Schweinhardt P, Seminowicz D, Wood P, Chizh B, Bushnell M: Accelerated brain gray matter loss in fibromyalgia patients: premature aging of the brain? J Neurosci 2007, 27:4004-4007.
- [181]Puri BK, Jakeman PM, Agour M, Gunatilake KD, Fernando KA, Gurusinghe AI, et al.: Regional grey and white matter volumetric changes in myalgic encephalomyelitis (chronic fatigue syndrome): a voxel-based morphometry 3-T MRI study. Br J Radiol 2011, 85:e270-e273.
- [182]Cook DB, O’Connor PJ, Lange G, Steffener J: Functional neuroimaging correlates of mental fatigue induced by cognition among chronic fatigue syndrome patients and controls. Neuroimage 2007, 36:108-122.
- [183]Caseras X, Mataix-Cols D, Rimes KA, Giampietro V, Brammer M, Zelaya F, et al.: The neural correlates of fatigue: an exploratory imaginal fatigue provocation study in chronic fatigue syndrome. Psychol Med 2008, 38:941-951.
- [184]Siessmeier T, Nix WA, Hardt J, Schreckenberger M, Egle UT, Bartenstein P: Observer independent analysis of cerebral glucose metabolism in patients with chronic fatigue syndrome. J Neurol Neurosurg Psychiatry 2003, 74:922-928.
- [185]Tirelli U, Chierichetti F, Tavio M, Simonelli C, Bianchin G, Zanco P, et al.: Brain positron emission tomography (PET) in chronic fatigue syndrome: preliminary data. Am J Med 1998, 105:54S-58S.
- [186]Barnden LR, Crouch B, Kwiatek R, Burnet R, Mernone A, Chryssidis S, et al.: A brain MRI study of chronic fatigue syndrome: evidence of brainstem dysfunction and altered homeostasis. NMR Biomed 2011, 24:1302-1312.
- [187]Alves G, Wentzel-Larsen T, Larsen JP: Is fatigue an independent and persistent symptom in patients with Parkinson disease? Neurology 2004, 63:1908-1911.
- [188]Pal S, Chaudhuri KR, Trenkwalder C, Forbes A, Bridgman K, DiMarco A: The parkinson’s disease sleep scale (pdss): A new instrument for assessment of sleep, nocturnal disability and daytime sleepiness in parkinson’s disease. Mov Disord 2002, 17:S122-S122.
- [189]Friedman JH, Brown RG, Comella C, Garber CE, Krupp LB, Lou JS, et al.: Fatigue in Parkinson’s disease: a review. Mov Disord 2007, 22:297-308.
- [190]van Hilten JJ, Weggeman M, van der Velde EA, Kerkhof GA, van Dijk JG, Roos RA: Sleep, excessive daytime sleepiness and fatigue in Parkinson’s disease. J Neural Transm Park Dis Dement Sect 1993, 5:235-244.
- [191]Barone P, Antonini A, Colosimo C, Marconi R, Morgante L, Avarello TP, et al.: The PRIAMO study: a multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov Disord 2009, 24:1641-1649.
- [192]Hagell P, Brundin L: Towards an understanding of fatigue in Parkinson disease. J Neurol Neurosurg Psychiatry 2009, 80:489-492.
- [193]Chaudhuri KR, Healy DG, Schapira AH: National Institute for Clinical Excellence: Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 2006, 5:235-245.
- [194]Schifitto G, Friedman JH, Oakes D, Shulman L, Comella CL, Marek K, et al.: Fatigue in levodopa-naive subjects with Parkinson disease. Neurology 2008, 71:481-485.
- [195]Dobbs RJ, Charlett A, Purkiss AG, Dobbs SM, Weller C, Peterson DW: Association of circulating TNF-alpha and IL-6 with ageing and parkinsonism. Acta Neurol Scand 1999, 100:34-41.
- [196]Blum-Degen D, Müller T, Kuhn W, Gerlach M, Przuntek H, Riederer P: Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 1995, 202:17-20.
- [197]Reale M, Iarlori C, Thomas A, Gambi D, Perfetti B, Di Nicola M, et al.: Peripheral cytokines profile in Parkinson’s disease. Brain Behav Immun 2009, 23:55-63.
- [198]Hisanaga K, Asagi M, Itoyama Y, Iwasaki Y: Increase in peripheral CD4 bright + CD8 dull + T cells in Parkinson disease. Arch Neurol 2001, 58:1580-1583.
- [199]Bas J, Calopa M, Mestre M, Molleví DG, Cutillas B, Ambrosio S, et al.: Lymphocyte populations in Parkinson’s disease and in rat models of parkinsonism. J Neuroimmunol 2001, 113:146-152.
- [200]Baba Y, Kuroiwa A, Uitti RJ, Wszolek ZK, Yamada T: Alterations of T-lymphocyte populations in Parkinson disease. Parkinsonism Relat Disord 2005, 11:493-498.
- [201]Scalzo P, Kümmer A, Cardoso F, Teixeira AL: Increased serum levels of soluble tumor necrosis factor-alpha receptor-1 in patients with Parkinson’s disease. J Neuroimmunol 2009, 216:122-125.
- [202]Dufek M, Hamanová M, Lokaj J, Goldemund D, Rektorová I, Michálková Z, et al.: Serum inflammatory biomarkers in Parkinson’s disease. Parkinsonism Relat Disord 2009, 15:318-320.
- [203]Chen H, O’Reilly EJ, Schwarzschild MA, Ascherio A: Peripheral inflammatory biomarkers and risk of Parkinson’s disease. Am J Epidemiol 2008, 167:90-95.
- [204]Tansey MG, McCoy MK, Frank-Cannon TC: Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 2007, 208:1-25.
- [205]Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG: Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 2009, 4:47.
- [206]Chung YC, Ko HW, Bok E, Park ES, Huh SH, Nam JH, et al.: The role of neuroinflammation on the pathogenesis of Parkinson’s disease. BMB Rep 2010, 43:225-232.
- [207]Esposito E, Di Matteo V, Benigno A, Pierucci M, Crescimanno G, Di Giovanni G: Non-steroidal anti-inflammatory drugs in Parkinson’s disease. Exp Neurol 2007, 205:295-312.
- [208]Koprich JB, Reske-Nielsen C, Mithal P, Isacson O: Neuroinflammation mediated by IL-1beta increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson’s disease. J Neuroinflammation 2008, 5:8.
- [209]Lindqvist D, Kaufman E, Brundin L, Hall S, Surova Y, Hansson O: Non-motor symptoms in patients with Parkinson’s disease - correlations with inflammatory cytokines in serum. PLoS One 2012, 7:e47387.
- [210]Ferrari CC, Tarelli R: Parkinson’s disease and systemic inflammation. Parkinsons Dis 2011, 2011:436813.
- [211]Farooqui T, Farooqui AA: Lipid-mediated oxidative stress and inflammation in the pathogenesis of Parkinson’s disease. Parkinsons Dis 2011, 2011:247467.
- [212]Tsang AH, Chung KK: Oxidative and nitrosative stress in Parkinson’s disease. Biochim Biophys Acta 2009, 1792:643-650.
- [213]Gao HM, Zhou H, Zhang F, Wilson BC, Kam W, Hong JS: HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration. J Neurosci 2011, 31:1081-1092.
- [214]Ko EA, Min HJ, Shin JS: Interaction of High Mobility Group Box-1 (HMGB1) with α-synuclein and its aggregation [abstract]. J Immunol 2012, 188:172.28.
- [215]Lindersson EK, Højrup P, Gai WP, Locker D, Martin D, Jensen PH: Alpha-synuclein filaments bind the transcriptional regulator HMGB-1. Neuroreport 2004, 15:2735-2739.
- [216]Fellner L, Irschick R, Schanda K, Reindl M, Klimaschewski L, Poewe W, et al.: Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia 2013, 61:349-360.
- [217]Kim C, Ho DH, Suk JE, You S, Michael S, Kang J, et al.: Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 2013, 4:1562.
- [218]Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD: Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 1990, 54:823-827.
- [219]Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, et al.: Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 1989, 163:1450-1455.
- [220]Bindoff L, Birch-Machin M, Cartlidge N, Parker W Jr, Turnbull D: Respiratory chain abnormalities in skeletal muscle from patients with Parkinson’s disease. J Neurol Sci 1991, 104:203-208.
- [221]Penn A, Roberts T, Hodder J, Allen P, Zhu G, Martin W: Generalized mitochondrial dysfunction in Parkinson’s disease detected by magnetic resonance spectroscopy of muscle. Neurology 1995, 45:2097-2099.
- [222]Blin O, Desnuelle C, Rascol O, Borg M, Paul H, Azulay JP, et al.: Mitochondrial respiratory failure in skeletal muscle from patients with Parkinson’s disease and multiple system atrophy. J Neurol Sci 1994, 125:95-101.
- [223]Haas R, Nasirian F, Nakano K, Ward D, Pay M, Hill R, et al.: Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson’s disease. Ann Neurol 1995, 37:714-722.
- [224]Krige D, Carroll M, Cooper J, Marsden C, Schapira A: Platelet mitochondrial function in Parkinson’s disease. The Royal Kings and Queens Parkinson Disease Research Group. Ann Neurol 1992, 32:782-788.
- [225]Keeney PM, Xie J, Capaldi RA, Bennett JP Jr: Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 2006, 26:5256-5264.
- [226]Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, et al.: Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 2003, 23:10756-10764.
- [227]Rana M, de Coo I, Diaz F, Smeets H, Moraes CT: An out-of-frame cytochrome b gene deletion from a patient with parkinsonism is associated with impaired complex III assembly and an increase in free radical production. Ann Neurol 2000, 48:774-781.
- [228]Acín-Pérez R, Bayona-Bafaluy MP, Fernández-Silva P, Moreno-Loshuertos R, Pérez-Martos A, Bruno C, et al.: Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol Cell 2004, 13:805-815.
- [229]Shults CW, Haas RH, Passov D, Beal MF: Coenzyme Q10 levels correlate with the activities of complexes I and II/III in mitochondria from parkinsonian and nonparkinsonian subjects. Ann Neurol 1997, 42:261-264.
- [230]Niethammer M, Feigin A, Eidelberg D: Functional neuroimaging in Parkinson’s disease. Cold Spring Harb Perspect Med 2012, 2:a009274.
- [231]Brooks D: Neuroimaging in Parkinson’s disease. NeuroRx 2004, 1:243-254.
- [232]Shao N, Yang J, Li J, Shang H: Voxelwise meta-analysis of gray matter anomalies in progressive supranuclear palsy and Parkinson’s disease using anatomic likelihood estimation. Front Hum Neurosci 2014, 8:63.
- [233]Xia J, Miu J, Ding H, Wang X, Chen H, Wang J, et al.: Changes of brain gray matter structure in Parkinson’s disease patients with dementia. Neural Regen Res 2013, 8:1276-1285.
- [234]Rektorova I, Biundo R, Marecek R, Weis L, Aarsland D, Antonini A: Grey matter changes in cognitively impaired Parkinson’s disease patients. PLos One 2014, 9:e85595.
- [235]Ellfolk U, Joutsa J, Rinne J, Parkkola R, Jokinen P, Karrasch M: Brain volumetric correlates of memory in early Parkinson’s disease. J Parkinsons Dis 2013, 3:593-601.
- [236]Nagano-Saito A, Washimi Y, Arahata Y, Kachi T, Lerch JP, Evans AC, et al.: Cerebral atrophy and its relation to cognitive impairment in Parkinson disease. Neurology 2005, 64:224-229.
- [237]Lee H, Kwon K, Kim M, Jang J, Suh S, Koh S, et al.: Subcortical grey matter changes in untreated, early stage Parkinson’s disease without dementia. Parkinsonism Relat Disord 2014, 20:622-626.
- [238]Guevara C, Blain C, Stahl D, Lythgoe D, Leigh P, Barker G: Quantitative magnetic resonance spectroscopic imaging in Parkinson’s disease, progressive supranuclear palsy and multiple system atrophy. Eur J Neurol 2010, 17:1193-1202.
- [239]Rango M, Bonifati C, Bresolin N: Parkinson’s disease and brain mitochondrial dysfunction: a functional phosphorus magnetic resonance spectroscopy study. J Cereb Blood Flow Metab 2005, 26:283-290.
- [240]Fukuda M, Mentis M, Ghilardi MF, Dhawan V, Antonini A, Hammerstad J, et al.: Functional correlates of pallidal stimulation for Parkinson’s disease. Ann Neurol 2001, 49:155-164.
- [241]Fukuda M, Mentis MJ, Ma Y, Dhawan V, Antonini A, Lang AE, et al.: Networks mediating the clinical effects of pallidal brain stimulation for Parkinson’s disease: a PET study of resting-state glucose metabolism. Brain 2001, 124:1601-1609.
- [242]Huang C, Mattis P, Tang C, Perrine K, Carbon M, Eidelberg D: Metabolic brain networks associated with cognitive function in Parkinson’s disease. Neuroimage 2007, 34:714-723.
- [243]Hosokai Y, Nishio Y, Hirayama K, Takeda A, Ishioka T, Sawada Y, et al.: Distinct patterns of regional cerebral glucose metabolism in Parkinson’s disease with and without mild cognitive impairment. Mov Disord 2009, 24:854-862.
- [244]Mentis MJ, McIntosh AR, Perrine K, Dhawan V, Berlin B, Feigin A, et al.: Relationships among the metabolic patterns that correlate with mnemonic, visuospatial, and mood symptoms in Parkinson’s disease. Am J Psychiatry 2002, 159:746-754.
- [245]Huang C, Mattis P, Perrine K, Brown N, Dhawan V, Eidelberg D: Metabolic abnormalities associated with mild cognitive impairment in Parkinson disease. Neurology 2008, 70:1470-1477.
- [246]Borghammer P, Chakravarty M, Jonsdottir K, Sato N, Matsuda H, Ito K, et al.: Cortical hypometabolism and hypoperfusion in Parkinson’s disease is extensive: probably even at early disease stages. Brain Struct Funct 2010, 214:303-317.
- [247]Peppard RF, Martin WR, Clark CM, Carr GD, McGeer PL, Calne DB: Cortical glucose metabolism in Parkinson’s and Alzheimer’s disease. J Neurosci Res 1990, 27:561-568.
- [248]Yong SW, Yoon JK, An YS, Lee PH: A comparison of cerebral glucose metabolism in Parkinson’s disease, Parkinson’s disease dementia and dementia with Lewy bodies. Eur J Neurol 2007, 14:1357-1362.
- [249]Fernández-Seara M, Mengual E, Vidorreta M, Aznarez-Sanado M, Loayza F, Villagra F, et al.: Cortical hypoperfusion in Parkinson’s disease assessed using arterial spin labeled perfusion MRI. Neuroimage 2012, 59:2743-2750.
- [250]Kamagata K, Motoi Y, Hori M, Suzuki M, Nakanishi A, Shimoji K, et al.: Posterior hypoperfusion in Parkinson’s disease with and without dementia measured with arterial spin labeling MRI. J Magn Reson Imaging 2011, 33:803-807.
- [251]Marin H, Menza MA: Specific treatment of residual fatigue in depressed patients. Psychiatry (Edgmont) 2004, 1:12-18.
- [252]Marin H, Menza MA: The management of fatigue in depressed patients. Essent Psychopharmacol 2005, 6:185-192.
- [253]Angst J, Gamma A, Gastpar M, Lépine JP, Mendlewicz J, Tylee A, et al.: Gender differences in depression. Epidemiological findings from the European DEPRES I and II studies. Eur Arch Psychiatry Clin Neurosci 2002, 252:201-209.
- [254]Morrow GR, Hickok JT, Roscoe JA, Raubertas RF, Andrews PL, Flynn PJ, et al.: Differential effects of paroxetine on fatigue and depression: a randomized, double-blind trial from the University of Rochester Cancer Center Community Clinical Oncology Program. J Clin Oncol 2003, 21:4635-4641.
- [255]Hartz AJ, Bentler SE, Brake KA, Kelly MW: The effectiveness of citalopram for idiopathic chronic fatigue. J Clin Psychiatry 2003, 64:927-935.
- [256]Fava M, Hoog SL, Judge RA, Kopp JB, Nilsson ME, Gonzales JS: Acute efficacy of fluoxetine versus sertraline and paroxetine in major depressive disorder. J Clin Psychopharmacol 2002, 22:137-147.
- [257]Wearden AJ, Morriss RK, Mullis R, Strickland PL, Pearson DJ, Appleby L, et al.: Randomised, double-blind, placebo-controlled treatment trial of fluoxetine and graded exercise for chronic fatigue syndrome. Br J Psychiatry 1998, 172:485-490.
- [258]Song C, Halbreich U, Han C, Leonard BE, Luo H: Imbalance between pro- and anti-inflammatory cytokines, and between Th1 and Th2 cytokines in depressed patients: the effect of electroacupuncture or fluoxetine treatment. Pharmacopsychiatry 2009, 42:182-188.
- [259]Leonard B, Maes M: Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 2012, 36:764-785.
- [260]Maes M: Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Prog Neuropsychopharmacol Biol Psychiatry 2011, 35:664-675.
- [261]Miller AH: Depression and immunity: a role for T cells? Brain Behav Immun 2010, 24:1-8.
- [262]Gárate I, García-Bueno B, Madrigal JL, Bravo L, Berrocoso E, Caso JR, et al.: Origin and consequences of brain Toll-like receptor 4 pathway stimulation in an experimental model of depression. J Neuroinflammation 2011, 8:151.
- [263]Pandey GN, Rizavi HS, Ren X, Bhaumik R, Dwivedi Y: Toll-like receptors in the depressed and suicide brain. J Psychiatr Res 2014, 53:62-68.
- [264]Gardner A, Boles RG: Beyond the serotonin hypothesis: mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 2011, 35:730-743.
- [265]Hamilton JP, Etkin A, Furman DJ, Lemus MG, Johnson RF, Gotlib IH: Functional neuroimaging of major depressive disorder: a meta-analysis and new integration of base line activation and neural response data. Am J Psychiatry 2012, 169:693-703.
- [266]Kempton MJ, Salvador Z, Munafò MR, Geddes JR, Simmons A, Frangou S, et al.: Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry 2011, 68:675-690.
- [267]Arnone D, McKie S, Elliott R, Juhasz G, Thomas E, Downey D, et al.: State-dependent changes in hippocampal grey matter in depression. Mol Psychiatry 2012, 18:1265-1272.
- [268]Grieve S, Korgaonkar M, Koslow S, Gordon E, Williams L: Widespread reductions in gray matter volume in depression. Neuroimage Clin 2013, 3:332-339.
- [269]Bora E, Fornito A, Pantelis C, Yücel M: Gray matter abnormalities in major depressive disorder: a meta-analysis of voxel based morphometry studies. J Affect Disord 2012, 138:9-18.
- [270]Du M, Wu Q, Yue Q, Li J, Liao Y, Kuang W, et al.: Voxelwise meta-analysis of gray matter reduction in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2012, 36:11-16.
- [271]Peng J, Liu J, Nie B, Li Y, Shan B, Wang G, et al.: Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: a voxel-based morphometry study. Eur J Radiol 2011, 80:395-399.
- [272]Walther S, Höfle O, Federspiel A, Horn H, Strik W, Muller T: P02-365-Frontotemporal resting state hypoperfusion in patients with major depression-a study using arterial spin labeling. Eur Psychiatry 2011, 26:961.
- [273]Ho T, Wu J, Shin D, Liu T, Tapert S, Yang G, et al.: Altered cerebral perfusion in executive, affective, and motor networks during adolescent depression. J Am Acad Child Adolesc Psychiatry 2013, 52:1076-1091.
- [274]Terada S, Oshima E, Sato S, Ikeda C, Nagao S, Hayashi S, et al.: Depressive symptoms and regional cerebral blood flow in Alzheimer’s disease. Psychiatry Res 2014, 221:86-91.
- [275]Ota M, Noda T, Sato N, Hattori K, Teraishi T, Hori H, et al.: Characteristic distributions of regional cerebral blood flow changes in major depressive disorder patients: a pseudo-continuous arterial spin labeling (pCASL) study. J Affect Disord 2014, 165:59-63.
- [276]Martinot J, Hardy P, Feline A, Huret J, Mazoyer B, Attar-Levy D, et al.: Left prefrontal glucose hypometabolism in the depressed state: a confirmation. Am J Psychiatry 1990, 147:1313-1317.
- [277]Hosokawa T, Momose T, Kasai K: Brain glucose metabolism difference between bipolar and unipolar mood disorders in depressed and euthymic states. Prog Neuropsychopharmacol Biol Psychiatry 2009, 33:243-250.
- [278]Hirono N, Mori E, Ishii K, Ikejiri Y, Imamura T, Shimomura T, et al.: Frontal lobe hypometabolism and depression in Alzheimer’s disease. Neurology 1998, 50:380-383.
- [279]Steiner J, Walter M, Gos T, Guillemin GJ, Bernstein HG, Sarnyai Z, et al.: Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflammation 2011, 8:94.
- [280]Krupp LB, LaRocca NG, Muir J, Steinberg AD: A study of fatigue in systemic lupus erythematosus. J Rheumatol 1990, 17:1450-1452.
- [281]Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD: The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol 1989, 46:1121-1123.
- [282]Krupp LB, Larocca NC, Luft BJ, Halpern JJ: Comparison of neurologic and psychologic findings in patients with Lyme disease and chronic fatigue syndrome. Neurology 1989, 39:144.
- [283]Ramsey-Goldman R, Rothrock N: Fatigue in systemic lupus erythematosus and rheumatoid arthritis. PM R 2010, 2:384-392.
- [284]Da Costa D, Dritsa M, Bernatsky S, Pineau C, Ménard HA, Dasgupta K, et al.: Dimensions of fatigue in systemic lupus erythematosus: relationship to disease status and behavioral and psychosocial factors. J Rheumatol 2006, 33:1282-1288.
- [285]Fortin PR, Abrahamowicz M, Neville C, du Berger R, Fraenkel L, Clarke AE, et al.: Impact of disease activity and cumulative damage on the health of lupus patients. Lupus 1998, 7:101-107.
- [286]Wang C, Mayo NE, Fortin PR: The relationship between health related quality of life and disease activity and damage in systemic lupus erythematosus. J Rheumatol 2001, 28:525-532.
- [287]Al Dhanhani AM, Gignac MA, Su J, Fortin PR: Work disability in systemic lupus erythematosus. Arthritis Rheum 2009, 61:378-385.
- [288]Panopalis P, Yazdany J, Gillis JZ, Julian L, Trupin L, Hersh AO, et al.: Health care costs and costs associated with changes in work productivity among persons with systemic lupus erythematosus. Arthritis Rheum 2008, 59:1788-1795.
- [289]Campillo B, Fouet P, Bonnet JC, Atlan G: Submaximal oxygen consumption in liver cirrhosis. Evidence of severe functional aerobic impairment. J Hepatol 1990, 10:163-167.
- [290]Keyser RE, Rus V, Cade WT, Kalappa N, Flores RH, Handwerger BS: Evidence for aerobic insufficiency in women with systemic Lupus erythematosus. Arthritis Rheum 2003, 49:16-22.
- [291]Zdrenghea D, Giurgea N, Predescu D, Timiş D, Icuşcă G: Exercise testing in patients with valvular diseases. Rom J Intern Med 1994, 32:23-28.
- [292]Wysenbeek AJ, Leibovici L, Weinberger A, Guedj D: Fatigue in systemic lupus erythematosus. Prevalence and relation to disease expression. Br J Rheumatol 1993, 32:633-635.
- [293]Zonana‐Nacach A, Roseman JM, McGwin G, Friedman AW, Baethge BA, Reveille JD. Systemic lupus erythematosus in three ethnic groups. VI: Factors associated with fatigue within 5 years of criteria diagnosis. Lupus. 2000; 9:101–109.
- [294]Marian V, Anolik JH: Treatment targets in systemic lupus erythematosus: biology and clinical perspective. Arthritis Res Ther 2012, 14:S3.
- [295]Aringer M, Feierl E, Smolen J: Cytokine blockade-a promising therapeutic option in SLE. Z Rheumatol 2008, 67:315-317. [in German]
- [296]Sabry A, Sheashaa H, El-Husseini A, Mahmoud K, Eldahshan K, George S, et al.: Proinflammatory cytokines (TNF-alpha and IL-6) in Egyptian patients with SLE: its correlation with disease activity. Cytokine 2006, 35:148-153.
- [297]Jacob N, Stohl W: Cytokine disturbances in systemic lupus erythematosus. Arthritis Res Ther 2011, 13:228.
- [298]Aringer M, Smolen J: Tumour necrosis factor and other proinflammatory cytokines in systemic lupus erythematosus: a rationale for therapeutic intervention. Lupus 2004, 13:344-347.
- [299]Keeling DM, Isenberg DA: Haematological manifestations of systemic lupus erythematosus. Blood Rev 1993, 7:199-207.
- [300]Wang G, Pierangeli SS, Papalardo E, Ansari GA, Khan MF: Markers of oxidative and nitrosative stress in systemic lupus erythematosus: correlation with disease activity. Arthritis Rheum 2010, 62:2064-2072.
- [301]Kim WU, Sreih A, Bucala R: Toll-like receptors in systemic lupus erythematosus; prospects for therapeutic intervention. Autoimmun Rev 2009, 8:204-208.
- [302]Rahman AH, Eisenberg RA: The role of toll-like receptors in systemic lupus erythematosus. Springer Semin Immunopathol 2006, 28:131-143.
- [303]Tiffin N, Adeyemo A, Okpechi I: A diverse array of genetic factors contribute to the pathogenesis of systemic lupus erythematosus. Orphanet J Rare Dis 2013, 8:2.
- [304]Dhaouadi T, Sfar I, Haouami Y, Abdelmoula L, Turki S, Hassine LB, et al.: Polymorphisms of Toll-like receptor-4 and CD14 in systemic lupus erythematosus and rheumatoid arthritis. Biomark Res 2013, 1:20.
- [305]Morris G, Berk M, Galecki P, Maes M: The emerging role of autoimmunity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs). Mol Neurobiol 2014, 49:741-756.
- [306]Harel L, Sandborg C, Lee T, von Scheven E: Neuropsychiatric manifestations in pediatric systemic lupus erythematosus and association with antiphospholipid antibodies. J Rheumatol 2006, 33:1873-1877.
- [307]Jung R, Segall J, Grazioplene R, Qualls C, Sibbitt W Jr, Roldan C: Cortical thickness and subcortical gray matter reductions in neuropsychiatric systemic lupus erythematosus. PLos One 2010, 5:9302.
- [308]Birnbaum J, Petri M, Thompson R, Izbudak I, Kerr D: Distinct subtypes of myelitis in systemic lupus erythematosus. Arthritis Rheum 2009, 60:3378-3387.
- [309]Appenzeller S, Li L, Costallat L, Cendes F: Neurometabolic changes in normal white matter may predict appearance of hyperintense lesions in systemic lupus erythematosus. Lupus 2007, 16:963-971.
- [310]Appenzeller S, Vasconcelos Faria A, Li L, Costallat L, Cendes F: Quantitative magnetic resonance imaging analyses and clinical significance of hyperintense white matter lesions in systemic lupus erythematosus patients. Ann Neurol 2008, 64:635-643.
- [311]Castellino G, Govoni M, Padovan M, Colamussi P, Borrelli M, Trotta F: Proton magnetic resonance spectroscopy may predict future brain lesions in SLE patients: a functional multi-imaging approach and follow up. Ann Rheum Dis 2005, 64:1022-1027.
- [312]Harboe E, Greve O, Beyer M, Goransson L, Tjensvoll A, Maroni S, et al.: Fatigue is associated with cerebral white matter hyperintensities in patients with systemic lupus erythematosus. J Neurol Neurosurg Psychiatry 2008, 79:199-201.
- [313]Gono T, Kawaguchi Y, Yamanaka H: Discoveries in the pathophysiology of neuropsychiatric lupus erythematosus: consequences for therapy. BMC Med 2013, 11:91.
- [314]Gono T, Takarada T, Fukumori R, Kawaguchi Y, Kaneko H, Hanaoka M, et al.: NR2-reactive antibody decreases cell viability through augmentation of Ca(2+) influx in systemic lupus erythematosus. Arthritis Rheum 2011, 63:3952-3959.
- [315]Kowal C, Degiorgio LA, Lee JY, Edgar MA, Huerta PT, Volpe BT, et al.: Human lupus autoantibodies against NMDA receptors mediate cognitive impairment. Proc Natl Acad Sci U S A 2006, 103:19854-19859.
- [316]DeGiorgio LA, Konstantinov KN, Lee SC, Hardin JA, Volpe BT, Diamond B: A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat Med 2001, 7:1189-1193.
- [317]Barendregt PJ, Visser MR, Smets EM, Tulen JH, van den Meiracker AH, Boomsma F, et al.: Fatigue in primary Sjögren’s syndrome. Ann Rheum Dis 1998, 57:291-295.
- [318]Markusse HM, Oudkerk M, Vroom TM, Breedveld FC: Primary Sjögren’s syndrome: clinical spectrum and mode of presentation based on an analysis of 50 patients selected from a department of rheumatology. Neth J Med 1992, 40:125-134.
- [319]Ng WF, Bowman SJ: Primary Sjogren’s syndrome: too dry and too tired. Rheumatology (Oxford) 2010, 49:844-853.
- [320]Giles I, Isenberg D: Fatigue in primary Sjögren's syndrome: is there a link with the fibromyalgia syndrome? Ann Rheum Dis 2000, 59:875-878.
- [321]Bax HI, Vriesendorp TM, Kallenberg CG, Kalk WW: Fatigue and immune activity in Sjögren’s syndrome. Ann Rheum Dis 2002, 61:284.
- [322]Tensing EK, Solovieva SA, Tervahartiala T, Nordström DC, Laine M, Niissalo S, et al.: Fatigue and health profile in sicca syndrome of Sjögren’s and non-Sjögren’s syndrome origin. Clin Exp Rheumatol 2001, 19:313-316.
- [323]Haldorsen K, Bjelland I, Bolstad AI, Jonsson R, Brun JG: A five-year prospective study of fatigue in primary Sjögren’s syndrome. Arthritis Res Ther 2011, 13:R167.
- [324]Norheim K, Harboe E, Goransson L, Omdal R: Interleukin-1 inhibition and fatigue in primary Sjögren’s syndrome–a double blind, randomised clinical trial. PLos One 2012, 7:30123.
- [325]Youinou P, Pers J: Disturbance of cytokine networks in Sjögrens syndrome. Arthritis Res Ther 2011, 13:227.
- [326]Szodoray P, Alex P, Brun J, Centola M, Jonsson R: Circulating cytokines in primary Sjögren’s syndrome determined by a multiplex cytokine array system. Scand J Immunol 2004, 59:592-599.
- [327]Hagiwara E, Pando J, Ishigatsubo Y, Klinman D: Altered frequency of type 1 cytokine secreting cells in the peripheral blood of patients with primary Sjögren’s syndrome. J Rheumatol 1998, 25:89-93.
- [328]Katsifis G, Rekka S, Moutsopoulos N, Pillemer S, Wahl S: Systemic and local interleukin-17 and linked cytokines associated with Sjögren’s syndrome immunopathogenesis. Am J Pathol 2009, 175:1167-1177.
- [329]Low HZ, Witte T: Aspects of innate immunity in Sjögren’s syndrome. Arthritis Res Ther 2011, 13:218.
- [330]Mavragani CP, Crow MK: Activation of the type I interferon pathway in primary Sjogren’s syndrome. J Autoimmun 2010, 35:225-231.
- [331]Konttinen YT, Fuellen G, Bing Y, Porola P, Stegaev V, Trokovic N, et al.: Sex steroids in Sjögren’s syndrome. J Autoimmun 2012, 39:49-56.
- [332]Bombardieri M, Pitzalis C: Ectopic lymphoid neogenesis and lymphoid chemokines in Sjogren’s syndrome: at the interplay between chronic inflammation, autoimmunity and lymphomagenesis. Curr Pharm Biotechnol 2012, 13:1989-1996.
- [333]Wakamatsu TH, Dogru M, Matsumoto Y, Kojima T, Kaido M, Ibrahim OM, et al.: Evaluation of lipid oxidative stress status in Sjögren syndrome patients. Invest Ophthalmol Vis Sci 2013, 54:201-210.
- [334]Mori K, Iijima M, Koike H, Hattori N, Tanaka F, Watanabe H, et al.: The wide spectrum of clinical manifestations in Sjögren’s syndrome-associated neuropathy. Brain 2005, 128:2518-2534.
- [335]Lafitte C, Amoura Z, Cacoub P, Pradat-Diehl P, Picq C, Salachas F, et al.: Neurological complications of primary Sjögren’s syndrome. J Neurol 2001, 248:577-584.
- [336]Soliotis FC, Mavragani CP, Moutsopoulos HM: Central nervous system involvement in Sjogren’s syndrome. Ann Rheum Dis 2004, 63:616-620.
- [337]Manthorpe R, Manthorpe T, Sjöberg S: Magnetic resonance imaging of the brain in patients with primary Sjögren’s syndrome. Scand J Rheumatol 1992, 21:148-149.
- [338]Alexander EL, Beall SS, Gordon B, Selnes OA, Yannakakis GD, Patronas N, et al.: Magnetic resonance imaging of cerebral lesions in patients with the Sjögren syndrome. Ann Intern Med 1988, 108:815-823.
- [339]Massara A, Bonazza S, Castellino G, Caniatti L, Trotta F, Borrelli M, et al.: Central nervous system involvement in Sjögren’s syndrome: unusual, but not unremarkable–clinical, serological characteristics and outcomes in a large cohort of Italian patients. Rheumatology 2010, 49:1540-1549.
- [340]Segal B, Mueller B, Zhu X, Prosser R, Pogatchnik B, Holker E, et al.: Disruption of brain white matter microstructure in primary Sjögren’s syndrome: evidence from diffusion tensor imaging. Rheumatology 2010, 49:1530-1539.
- [341]Pierot L, Sauve C, Leger J, Martin N, Koeger A, Wechsler B, et al.: Asymptomatic cerebral involvement in Sjögren’s syndrome: MRI findings of 15 cases. Neuroradiology 1993, 35:378-380.
- [342]Tzarouchi L, Tsifetaki N, Konitsiotis S, Zikou A, Astrakas L, Drosos A, et al.: CNS involvement in primary Sjogren Syndrome: assessment of gray and white matter changes with MRI and voxel-based morphometry. AJR Am J Roentgenol 2011, 197:1207-1212.
- [343]Lauvsnes M, Beyer M, Appenzeller S, Greve O, Harboe E, Goransson L, et al.: Loss of cerebral white matter in primary Sjögren’s syndrome: a controlled volumetric magnetic resonance imaging study. Eur J Neurol 2014, 21:1324-1329.
- [344]Repping-Wuts H, van Riel P, van Achterberg T: Fatigue in patients with rheumatoid arthritis: what is known and what is needed. Rheumatology (Oxford) 2009, 48:207-209.
- [345]Repping-Wuts H, Fransen J, van Achterberg T, Bleijenberg G, van Riel P: Persistent severe fatigue in patients with rheumatoid arthritis. J Clin Nurs 2007, 16:377-383.
- [346]Repping-Wuts H, Uitterhoeve R, van Riel P, van Achterberg T: Fatigue as experienced by patients with rheumatoid arthritis (RA): a qualitative study. Int J Nurs Stud 2008, 45:995-1002.
- [347]Hewlett S, Cockshott Z, Byron M, Kitchen K, Tipler S, Pope D, et al.: Patients’ perceptions of fatigue in rheumatoid arthritis: overwhelming, uncontrollable, ignored. Arthritis Rheum 2005, 53:697-702.
- [348]Pollard LC, Choy EH, Gonzalez J, Khoshaba B, Scott DL: Fatigue in rheumatoid arthritis reflects pain, not disease activity. Rheumatology (Oxford) 2006, 45:885-889.
- [349]Sariyildiz M, Batmaz I, Bozkurt M, Bez Y, Cetincakmak M, Yazmalar L, et al.: Sleep quality in rheumatoid arthritis: relationship between the disease severity, depression, functional status and the quality of life. J Clin Med Res 2014, 6:44.
- [350]Turan Y, Kocaağa Z, Koçyiğit H, Gürgan A, Bayram KB, İpek S: Correlation of fatigue with clinical parameters and quality of life in rheumatoid arthritis. Arch Rheumatol 2010, 25:63-67.
- [351]Tukaj S, Kotlarz A, Jozwik A, Smolenska Z, Bryl E, Witkowski J, et al.: Cytokines of the Th1 and Th2 type in sera of rheumatoid arthritis patients; correlations with anti-Hsp40 immune response and diagnostic markers. Acta Biochim Pol 2010, 57:327-332.
- [352]Alex P, Szodoray P, Knowlton N, Dozmorov I, Turner M, Frank M, et al.: Multiplex serum cytokine monitoring as a prognostic tool in rheumatoid arthritis. Clin Exp Rheumatol 2007, 25:584-592.
- [353]Chen D, Chen Y, Chen H, Hsieh C, Lin C, Lan J: Increasing levels of circulating Th17 cells and interleukin-17 in rheumatoid arthritis patients with an inadequate response to anti-TNF-alpha therapy. Arthritis Res Ther 2011, 13:R126.
- [354]Feldmann M, Maini SR: Role of cytokines in rheumatoid arthritis: an education in pathophysiology and therapeutics. Immunol Rev 2008, 223:7-19.
- [355]Kremer JM, Westhovens R, Leon M, Di Giorgio E, Alten R, Steinfeld S, et al.: Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med 2003, 349:1907-1915.
- [356]Liepe K: Efficacy of radiosynovectomy in rheumatoid arthritis. Rheumatol Int 2012, 32:3219-3224.
- [357]Moreland LW, Genovese MC, Sato R, Singh A: Effect of etanercept on fatigue in patients with recent or established rheumatoid arthritis. Arthritis Rheum 2006, 55:287-293.
- [358]Weinblatt ME, Keystone EC, Furst DE, Moreland LW, Weisman MH, Birbara CA, et al.: Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum 2003, 48:35-45.
- [359]Goh F, Midwood K: Intrinsic danger: activation of Toll-like receptors in rheumatoid arthritis. Rheumatology 2011, 51:7-23.
- [360]Huang Q, Pope R: The role of toll-like receptors in rheumatoid arthritis. Curr Rheumatol Rep 2009, 11:357-364.
- [361]Brentano F, Kyburz D, Gay S: Toll-like receptors and rheumatoid arthritis. Methods Mol Biol 2009, 517:329-343.
- [362]Szabo-Taylor K, Nagy G, Eggleton P, Winyard P. Oxidative stress in rheumatoid arthritis. In: Studies on Arthritis and Joint Disorders. Springer Science+Business Media; 2013. p. 145–67 [Alcaraz MJ (Series Editor): Oxidative Stress in Applied Basic Research and Clinical Practice].
- [363]Kundu S, Ghosh P, Datta S, Ghosh A, Chattopadhyay S, Chatterjee M: Oxidative stress as a potential biomarker for determining disease activity in patients with rheumatoid arthritis. Free Radic Res 2012, 46:1482-1489.
- [364]Hassan S, Gheita T, Kenawy S, Fahim A, El-Sorougy I, Abdou M: Oxidative stress in systemic lupus erythematosus and rheumatoid arthritis patients: relationship to disease manifestations and activity. Int J Rheum Dis 2011, 14:325-331.
- [365]Tak P, Zvaifler N, Green D, Firestein G: Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases. Immunol Today 2000, 21:78-82.
- [366]Da Sylva T, Connor A, Mburu Y, Keystone E, Wu G: Somatic mutations in the mitochondria of rheumatoid arthritis synoviocytes. Arthritis Res Ther 2005, 7:844-851.
- [367]Valcárcel-Ares M, Vaamonde-Garcia C, Riveiro-Naveira R, Lema B, Blanco F, Lopez-Armada M: A novel role for mitochondrial dysfunction in the inflammatory response of rheumatoid arthritis [abstract]. Ann Rheum Dis 2010, 69:A56.
- [368]Cillero-Pastor B, Rego-Perez I, Oreiro N, Fernandez-Lopez C, Blanco F: Mitochondrial respiratory chain dysfunction modulates metalloproteases-1,-3 and-13 in human normal chondrocytes in culture. BMC Musculoskelet Disord 2013, 14:1-10.
- [369]Wartolowska K, Hough M, Jenkinson M, Andersson J, Wordsworth B, Tracey I: Structural changes of the brain in rheumatoid arthritis. Arthritis Rheum 2012, 64:371-379.
- [370]Bekkelund SI, Pierre-Jerome C, Husby G, Mellgren SI: Quantitative cerebral MR in rheumatoid arthritis. AJNR Am J Neuroradiol 1995, 16:767-772.
- [371]Mok CC, Lau CS: Pathogenesis of systemic lupus erythematosus. J Clin Pathol 2003, 56:481-490.
- [372]Voulgarelis M, Tzioufas AG: Current aspects of pathogenesis in Sjögren’s syndrome. Ther Adv Musculoskelet Dis 2010, 2:325-334.
- [373]Westerlind H, Boström I, Stawiarz L, Landtblom AM, Almqvist C, Hillert J: New data identify an increasing sex ratio of multiple sclerosis in Sweden. Mult Scler 2014, 20:1578-1583.
- [374]Bakken I, Tveito K, Gunnes N, Ghaderi S, Stoltenberg C, Trogstad L, et al.: Two age peaks in the incidence of chronic fatigue syndrome/myalgic encephalomyelitis: a population-based registry study from Norway 2008-2012. BMC Med 2014, 12:167.
- [375]Piccinelli M, Wilkinson G: Gender differences in depression. Critical review. Br J Psychiatry 2000, 177:486-492.
- [376]Lubomski M, Louise Rushworth R, Lee W, Bertram KL, Williams DR: Sex differences in Parkinson’s disease. J Clin Neurosci 2014, 21:1503-1506.
- [377]Benkler M, Agmon-Levin N, Hassin-Baer S, Cohen OS, Ortega-Hernandez OD, Levy A, et al.: Immunology, autoimmunity, and autoantibodies in Parkinson’s disease. Clin Rev Allergy Immunol 2012, 42:164-171.
- [378]Oertelt-Prigione S: The influence of sex and gender on the immune response. Autoimmun Rev 2012, 11:A479-A485.
- [379]Munoz-Cruz S, Togno-Pierce C, Morales-Montor J: Non-reproductive effects of sex steroids: their immunoregulatory role. Curr Top Med Chem 2011, 11:1714-1727.
- [380]Berghella A, Contasta I, Del Beato T, Pellegrini P: The discovery of how gender influences age immunological mechanisms in health and disease, and the identification of ageing gender-specific biomarkers, could lead to specifically tailored treatment and ultimately improve therapeutic success rates. Immun Ageing 2012, 9:24.
- [381]Sárvári M, Hrabovszky E, Kalló I, Solymosi N, Tóth K, Likó I, et al.: Estrogens regulate neuroinflammatory genes via estrogen receptors α and β in the frontal cortex of middle-aged female rats. J Neuroinflammation 2011, 8:82.
- [382]Schiebinger L, Schraudner M: Interdisciplinary approaches to achieving gendered innovations in science, medicine, and engineering. Interdisc Science Rev 2011, 36:154-167.
- [383]Pittman P: Aluminum-containing vaccine associated adverse events: role of route of administration and gender. Vaccine 2002, 20:S48-S50.
- [384]Reif D, Motsinger-Reif A, McKinney B, Rock M, Crowe J, Moore J: Integrated analysis of genetic and proteomic data identifies biomarkers associated with adverse events following smallpox vaccination. Genes Immun 2008, 10:112-119.
- [385]Vera-Lastra O, Medina G, Cruz-Dominguez M, Jara L, Shoenfeld Y: Autoimmune/inflammatory syndrome induced by adjuvants (Shoenfeld’s syndrome): clinical and immunological spectrum. Expert Rev Clin Immunol 2013, 9:361-373.
- [386]Nancy A, Shoenfeld Y: Chronic fatigue syndrome with autoantibodies–the result of an augmented adjuvant effect of hepatitis-B vaccine and silicone implant. Autoimmun Rev 2008, 8:52-55.
- [387]Kool M, Petrilli V, De Smedt T, Rolaz A, Hammad H, van Nimwegen M, et al.: Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol 2008, 181:3755-3759.
- [388]Yan Z, Zhang Q, Xu L, Wu W, Ren W, Liu LH, et al.: Involvement of Toll-like receptor in silica-induced tumor necrosis factor alpha release from human macrophage cell line. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2010, 28:427-429. [in Chinese]
- [389]Perricone C, Agmon-Levin N, Shoenfeld Y: Novel pebbles in the mosaic of autoimmunity. BMC Med 2013, 11:101.
- [390]Pfreundschuh M, Muller C, Zeynalova S, Kuhnt E, Wiesen M, Held G, et al.: Suboptimal dosing of rituximab in male and female patients with DLBCL. Blood 2013, 123:640-646.
- [391]Anderson G: Gender differences in pharmacological response. Int Rev Neurobiol 2014, 83:1-10.
- [392]Sivro A, Lajoie J, Kimani J, Jaoko W, Plummer F, Fowke K, et al.: Age and menopause affect the expression of specific cytokines/chemokines in plasma and cervical lavage samples from female sex workers in Nairobi. Kenya. Immun Ageing 2013, 10:42.
- [393]Stasi R: Rituximab in autoimmune hematologic diseases: not just a matter of B cells. Semin Hematol 2010, 47:170-179.
- [394]Tsuda M, Moritoki Y, Lian Z, Zhang W, Yoshida K, Wakabayashi K, et al.: Biochemical and immunologic effects of rituximab in patients with primary biliary cirrhosis and an incomplete response to ursodeoxycholic acid. Hepatology 2012, 55:512-521.
- [395]van de Veerdonk F, Lauwerys B, Marijnissen R, Timmermans K, Di Padova F, Koenders MI, et al.: The anti-CD20 antibody rituximab reduces the Th17 cell response. Arthritis Rheum 2011, 63:1507-1516.
- [396]Yamamoto A, Sato K, Miyoshi F, Shindo Y, Yoshida Y, Yokota K, et al.: Analysis of cytokine production patterns of peripheral blood mononuclear cells from a rheumatoid arthritis patient successfully treated with rituximab. Mod Rheumatol 2009, 20:183-187.
- [397]Morris G, Anderson G, Dean O, Berk M, Galecki P, Martin-Subero M, et al.: The glutathione system: a new drug target in neuroimmune disorders. Mol Neurobiol 2014, 50:1059-1084.
- [398]Greco CM, Nakajima C, Manzi S: Updated review of complementary and alternative medicine treatments for systemic lupus erythematosus. Curr Rheumatol Rep 2013, 15:378.
- [399]Maes M, Fišar Z, Medina M, Scapagnini G, Nowak G, Berk M: New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates–Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology 2012, 20:127-150.
- [400]Puri BK, Holmes J, Hamilton G: Eicosapentaenoic acid-rich essential fatty acid supplementation in chronic fatigue syndrome associated with symptom remission and structural brain changes. Int J Clin Pract 2004, 58:297-299.
- [401]Duffy EM, Meenagh GK, McMillan SA, Strain JJ, Hannigan BM, Bell AL: The clinical effect of dietary supplementation with omega-3 fish oils and/or copper in systemic lupus erythematosus. J Rheumatol 2004, 31:1551-1556.
- [402]Kremer JM: n-3 fatty acid supplements in rheumatoid arthritis. Am J Clin Nutr 2000, 71:349S-351S.
- [403]Lopresti AL, Maes M, Maker GL, Hood SD, Drummond PD: Curcumin for the treatment of major depression: a randomised, double-blind, placebo controlled study. J Affect Disord 2014, 167:368-375.
- [404]Chandran B, Goel A: A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytother Res 2012, 26:1719-1725.