期刊论文详细信息
BMC Evolutionary Biology
Characterisation and localisation of the opsin protein repertoire in the brain and retinas of a spider and an onychophoran
Axel Schmid3  Gerhard Steiner1  David Fredman2  Bo Joakim Eriksson3 
[1] Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Vienna, Austria;Department of Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Vienna, Austria;Department of Neurobiology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
关键词: Transcriptome;    Ciliary opsin;    Expression pattern;    Spider;    Onychophora;    Opsins;   
Others  :  1086410
DOI  :  10.1186/1471-2148-13-186
 received in 2013-03-01, accepted in 2013-09-03,  发布年份 2013
PDF
【 摘 要 】

Background

Opsins have been found in the majority of animals and their most apparent functions are related to vision and light-guided behaviour. As an increasing number of sequences have become available it has become clear that many opsin-like transcripts are expressed in tissues other than the eyes. Opsins can be divided into three main groups: rhabdomeric opsins (r-opsins), ciliary opsins (c-opsins) and group 4 opsins. In arthropods, the main focus has been on the r-opsins involved in vision. However, with increased sequencing it is becoming clear that arthropods also possess opsins of the c-type, group 4 opsins and the newly discovered arthropsins but the functions of these opsins are unknown in arthropods and data on their localisation is limited or absent.

Results

We identified opsins from the spider Cupiennius salei and the onychophoran Euperipatoides kanangrensis and characterised the phylogeny and localisation of these transcripts. We recovered all known visual opsins in C. salei, and in addition found a peropsin, a c-opsin and an opsin resembling Daphnia pulex arthropsin. The peropsin was expressed in all eye types except the anterior median eyes. The arthropsin and the c-opsin were expressed in the central nervous system but not the eyes. In E. kanangrensis we found: a c-opsin; an opsin resembling D. pulex arthropsins; and an r-opsin with high sequence similarity to previously published onychophoran onychopsins. The E. kanangrensis c-opsin and onychopsin were expressed in both the eyes and the brain but the arthropsin only in the brain.

Conclusion

Our novel finding that opsins of both the ciliary and rhabdomeric type are present in the onychophoran and a spider suggests that these two types of opsins were present in the last common ancestor of the Onychophora and Euarthropoda. The expression of the c-opsin in the eye of an onychophoran indicates that c-opsins may originally have been involved in vision in the arthropod clade. The lack of c-opsin expression in the spider retina suggests that the role for c-opsin in vision was lost in the euarthropods. Our discovery of arthropsin in onychophorans and spiders dates the emergence of arthropsin to the common ancestor of Onychophora and Euarthropoda and their expression in the brain suggests a non-visual function.

【 授权许可】

   
2013 Eriksson et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116011657594.pdf 2581KB PDF download
Figure 3. 31KB Image download
20150715131958762.pdf 1195KB PDF download
Figure 1. 168KB Image download
【 图 表 】

Figure 1.

Figure 3.

【 参考文献 】
  • [1]Nathans J, Hogness D: Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell 1983, 34:807-814.
  • [2]Ovchinnikov Yu A: Rhodopsin and bacteriorhodopsin: structure-function relationships. FEBS Lett 1982, 148(2):179-191.
  • [3]Terakita A, Kawano-Yamashita E, Koyanagi M: Evolution and diversity of opsins. WIREs Membr Transp Signal 2012, 1(1):104-111.
  • [4]Porter ML, Blasic JR, Bok MJ, Cameron EG, Pringle T, Cronin TW, Robinson PR: Shedding new light on opsin evolution. Proc R Soc B Biol Sci 2011, 279:3-14.
  • [5]Terakita A: The opsins. Genome Biol 2005, 6(3):213.
  • [6]Arendt D, Tessmar-Raible K, Snyman H, Dorresteijn A, Wittbrodt J: Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 2004, 306:869-871.
  • [7]Velarde RA, Sauer CD, O Walden KK, Fahrbach SE, Robertson HM: Pteropsin: a vertebrate-like non-visual opsin expressed in the honey bee brain. Insect Biochem Mol Biol 2005, 35(12):1367-1377.
  • [8]Passamaneck Y, Furchheim N, Hejnol A, Martindale M, Luter C: Ciliary photoreceptors in the cerebral eyes of a protostome larva. EvoDevo 2011, 2(1):6.
  • [9]Robinson GE, Hackett KJ, Purcell-Miramontes M, Brown SJ, Evans JD, Goldsmith MR, Lawson D, Okamuro J, Robertson HM, Schneider DJ: Creating a buzz about insect genomes. Science 2011, 331(6023):1386.
  • [10]Koyanagi M, Nagata T, Katoh K, Yamashita S, Tokunaga F: Molecular evolution of arthropod color vision deduced from multiple opsin genes of jumping Spiders. J Mol Evol 2008, 66(2):130-137.
  • [11]Nagata T, Koyanagi M, Tsukamoto H, Terakita A: Identification and characterization of a protostome homologue of peropsin from a jumping spider. J Comp Physiol A 2010, 196(1):51-59.
  • [12]Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, Tokishita S, Aerts A, Arnold GJ, Basu MK, et al.: The ecoresponsive genome of Daphnia pulex. Science 2011, 331(6017):555-561.
  • [13]Campbell LI, Rota-Stabelli O, Edgecombe GD, Marchioro T, Longhorn SJ, Telford MJ, Philippe H, Rebecchi L, Peterson KJ, Pisani D: MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc Natl Acad Sci 2011, 108(38):15920-15924.
  • [14]Dakin WJ: The eye of peripatus. Q J Microsc Sci 1921, 65:163-172.
  • [15]Mayer G: Structure and development of onychophoran eyes: What is the ancestral visual organ in arthropods? Arthropod Struct Dev 2006, 35(4):231-245.
  • [16]Hering L, Henze MJ, Kohler M, Kelber A, Bleidorn C, Leschke M, Nickel B, Meyer M, Kircher M, Sunnucks P, et al.: Opsins in Onychophora (Velvet Worms) Suggest a Single Origin and Subsequent Diversification of Visual Pigments in Arthropods. Mol Biol Evol 2012, 29(11):3451-3458.
  • [17]Eakin RM, Westfall JA: Fine structure of the eye of peripatus (Onychophora) . Cell Tissue Res 1965, 68:278-300.
  • [18]Plachetzki DC, Fong CR, Oakley TH: The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway. Proc R Soc B Biol Sci 2010, 277(1690):1963-1969.
  • [19]Smith WC, Price DA, Greenberg RM, Battelle BA: Opsins from the lateral eyes and ocelli of the horseshoe crab, Limulus polyphemus. Proc Natl Acad Sci 1993, 90(13):6150-6154.
  • [20]Greven H: Comments on the eyes of tardigrades. Arthropod Struct Dev 2007, 36(4):401-407.
  • [21]Giribet G, Edgecombe GD: Reevaluating the Arthropod Tree of Life. Annu Rev Entomol 2012, 57(1):167-186.
  • [22]Koyanagi M, Terakita A, Kubokawa K, Shichida Y: Amphioxus homologs of Go-coupled rhodopsin and peropsin having 11-cis- and all-trans-retinals as their chromophores. FEBS letters 2002, 531(3):525-528.
  • [23]Sun H, Gilbert D, Copeland N, Jenkins N, Nathans J: Peropsin, a novel visual pigment-like protein located in the apical microvilli of the retinal pigment epithelium. Proc Natl Acad Sci USA 1997, 94:9893-9898.
  • [24]Huelsenbeck J, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17:754-755.
  • [25]Sakmar T, Franke R, Khorana H: Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc Natl Acad Sci U S A 1989, 86:8309-8313.
  • [26]Terakita A, Koyanagi M, Tsukamoto H, Yamashita T, Miyata T, Shichida Y: Counterion displacement in the molecular evolution of the rhodopsin family. Nat Struct Mol Biol 2004, 11(3):284-289.
  • [27]Zopf L, Fredman D, Schmid A, Eriksson BJ: Spectral sensitivity of the ctenid spider Cupiennius salei Keys. The Journal of Experimental Biology 2013. doi:10.1242/jeb.086256. Published on line ahead of print
  • [28]Marin EP, Krishna AG, Zvyaga TA, Isele J, Siebert F, Sakmar TP: The Amino Terminus of the Fourth Cytoplasmic Loop of Rhodopsin Modulates Rhodopsin-Transducin Interaction. J Biol Chem 2000, 275(3):1930-1936.
  • [29]Franke RR, Sakmar TP, Graham RM, Khorana HG: Structure and function in rhodopsin. Studies of the interaction between the rhodopsin cytoplasmic domain and transducin. J Biol Chem 1992, 267(21):14767-14774.
  • [30]Salvini-Plawen L: Photoreception and the polyphyletic evolution of photoreceptors (with special reference to Mollusca)*. Am Malacological Bulletin 2008, 26:83-100.
  • [31]Holborow PL, Laverack MS: Presumptive photoreceptor structures of the trochophore of Harmothoë imbricata (Polychaeta) . Mar Behav Physiol 1972, 1(1–4):139-156.
  • [32]Whittle AC, Golding DW: The fine structure of prostomial photoreceptors in Eulalia viridis (Polychaeta; Annelida) . Cell Tissue Res 1974, 154(3):379-398.
  • [33]Miller WH: Derivatives of cilia in the distal sense cells of the retina of Pecten. J Biophys Biochem Cytol 1958, 4:227-228.
  • [34]Nilsson D-E: Eyes as Optical Alarm Systems in Fan Worms and Ark Clams. Philos Trans R Soc Lond B Biol Sci 1994, 346(1316):195-212.
  • [35]Lake P, Ong J: Observations of the organ of bellonci of the shrimp Paratya rasmaniensis Riek (Crustacea : Decapoda : Atyidae) with particular reference to the structure of the onion body cells . Aust J Zool 1972, 20(3):215-234.
  • [36]Lehmann T, Heß M, Melzer RR: Wiring a Periscope – Ocelli, Retinula Axons, Visual Neuropils and the Ancestrality of Sea Spiders. PLoS ONE 2012, 7(1):e30474.
  • [37]Eriksson BJ, Tait NN, Budd GE: Head development in the onychophoran Euperipatoides kanangrensis with particular reference to the central nervous system. J Morphol 2003, 255:1-23.
  • [38]Eriksson BJ, Tait NN, Norman JM, Budd GE: An ultrastructural investigation of the hypocerebral organ of the adult Euperipatoides kanangrensis (Onychophora, Peripatopsidae) . Arthropod Struct Dev 2005, 34(4):407-418.
  • [39]Pflugfelder O: Entwicklung von Paraperipatus amboinensis n. sp . Zool Jb Anat Ont 1948, 69:443-492.
  • [40]Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu Z, Loftus B, Xi Z, Megy K, Grabherr M, et al.: Genome Sequence of Aedes aegypti, a Major Arbovirus Vector . Science 2007, 316(5832):1718-1723.
  • [41]Zhan S, Merlin C, Boore Jeffrey L, Reppert Steven M: The Monarch Butterfly Genome Yields Insights into Long-Distance Migration. Cell 2011, 147(5):1171-1185.
  • [42]Grusch M, Barth FG, Eguchi E: Fine structural correlates of sensitivity in the eyes of the ctenid spider, Cupiennius salei Keys . Tissue Cell 1997, 29(4):421-430.
  • [43]Schmid A: Different functions of different eye types in the spider Cupiennius salei. J Exp Biol 1998, 201(2):221-225.
  • [44]Sancar A: Regulation of the Mammalian Circadian Clock by Cryptochrome. J Biol Chem 2004, 279(33):34079-34082.
  • [45]Anisimova M, Gascuel O: Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 2006, 55(4):539-552.
  • [46]Chevenet F, Brun C, Banuls A-L, Jacq B, Christen R: TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinforma 2006, 7(1):439.
  • [47]Dereeper A, Audic S, Claverie J-M, Blanc G: BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol 2010, 10(1):8.
  • [48]Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard J-F, Guindon S, Lefort V, Lescot M, et al.: Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 2008, 36(suppl 2):W465-W469.
  • [49]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52(5):696-704.
  • [50]Swofford DL: PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sunderland, Massachusetts: Sinauer Associates; 2002.
  • [51]Eriksson BJ, Budd GE: Onychophoran cephalic nerves and their bearing on our understanding of head segmentation and stem-group evolution of Arthropoda. Arthropod Struct Dev 2000, 29(3):197-209.
  • [52]Henry LM: The nervous system and the segmentation of the head in the annulata. Microentomology 1948, 13(2):27-48.
  • [53]Rozen S, Skaletsky HJ: Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology. Edited by Krawetz S, Misener S. Totowa, NJ: Humana Press; 2000:365-386.
  文献评价指标  
  下载次数:20次 浏览次数:8次