期刊论文详细信息
BMC Genomics
Expression patterns, molecular markers and genetic diversity of insect-susceptible and resistant Barbarea genotypes by comparative transcriptome analysis
Xixiang Li1  Niels Agerbirk2  Di Shen1  Haiping Wang1  Jiangping Song1  Yang Qiu1  Xiaochun Wei3  Tongjin Liu1  Xiaohui Zhang1 
[1] Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China;Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark;Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
关键词: Saponin biosynthesis;    Genetic diversity;    Molecular marker;    Expression pattern;    Diamondback moth;    Transcriptome;    Barbarea vulgaris;   
Others  :  1219241
DOI  :  10.1186/s12864-015-1609-y
 received in 2014-10-28, accepted in 2015-05-01,  发布年份 2015
PDF
【 摘 要 】

Background

Barbarea vulgaris contains two genotypes: the glabrous type (G-type), which confers resistance to the diamondback moth (DBM) and other insect pests, and the pubescent type (P-type), which is susceptible to the DBM. Herein, the transcriptomes of P-type B. vulgaris before and after DBM infestation were subjected to Illumina (Solexa) pyrosequencing and comparative analysis.

Results

5.0 gigabase pairs of clean nucleotides were generated. Non-redundant unigenes (33,721) were assembled and 94.1 % of them were annotated. Compared with our previous G-type transcriptome, the expression patterns of many insect responsive genes, including those related to secondary metabolism, phytohormones and transcription factors, which were significantly induced by DBM in G-type plants, were less sensitive to DBM infestation in P-type plants. The genes of the triterpenoid saponin pathway were identified in both G- and P-type plants. The upstream genes of the pathway showed similar expression patterns between the two genotypes. However, gene expression for two downstream enzymes, the glucosyl transferase (UGT73C11) and an oxidosqualene cyclase (OSC), were significantly upregulated in the P-type compared with the G-type plant. The homologous genes from P- and G-type plants were detected by BLAST unigenes with a cutoff level E-value < e −10 . 12,980 gene families containing 26,793 P-type and 36,944 G-type unigenes were shared by the two types of B. vulgaris. 38,397 single nucleotide polymorphisms (SNPs) were found in 9,452 orthologous genes between the P- and G-type plants. We also detected 5,105 simple sequence repeats (SSRs) in the B. vulgaris transcriptome, comprising mono-nucleotide-repeats (2,477; 48.5 %) and triple-nucleotide-repeats (1,590; 31.1 %). Of these, 1,657 SSRs displayed polymorphisms between the P- and G-type. Consequently, 913 SSR primer pairs were designed with a resolution of more than two nucleotides. We randomly chose 30 SSRs to detect the genetic diversity of 32 Barbarea germplasms. The distance tree showed that these accessions were clearly divided into groups, with the G-type grouping with available Western and Central European B. vulgaris accessions in contrast to the P-type accession, B. stricta and B. verna.

Conclusions

These data represent useful information for pest-resistance gene mining and for the investigation of the molecular basis of plant-pest interactions.

【 授权许可】

   
2015 Zhang et al.

【 预 览 】
附件列表
Files Size Format View
20150715132555814.pdf 3070KB PDF download
Fig. 5. 70KB Image download
Fig. 4. 21KB Image download
Fig. 3. 126KB Image download
Fig. 2. 110KB Image download
Fig. 1. 145KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Al-Shehbaz I, Beilstein M, Kellogg E. Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol. 2006; 259:89-120.
  • [2]Orgaard M, Linde-Laursen I. Cytogenetics of Danish species of Barbarea (Brassicaceae): chromocentres, chromosomes and rDNA sites. Hereditas. 2007; 144(4):159-70.
  • [3]Orgaard M, Linde-Laursen I. Meiotic analysis of Danish species of Barbarea (Brassicaceae) using FISH: chromosome numbers and rDNA sites. Hereditas. 2008; 145(5):215-9.
  • [4]Agerbirk N, Olsen CE, Nielsen JK. Seasonal variation in leaf glucosinolates and insect resistance in two types of Barbarea vulgaris ssp arcuata. Phytochemistry. 2001; 58(1):91-100.
  • [5]Agerbirk N, Olsen CE, Bibby BM, Frandsen HO, Brown LD, Nielsen JK et al.. A saponin correlated with variable resistance of Barbarea vulgaris to the diamondback moth Plutella xylostella. J Chem Ecol. 2003; 29(6):1417-33.
  • [6]Agerbirk N, Orgaard M, Nielsen JK. Glucosinolates, flea beetle resistance, and leaf pubescence as taxonomic characters in the genus Barbarea (Brassicaceae). Phytochemistry. 2003; 63(1):69-80.
  • [7]van Molken T, Kuzina V, Munk KR, Olsen CE, Sundelin T, van Dam NM et al.. Consequences of combined herbivore feeding and pathogen infection for fitness of Barbarea vulgaris plants. Oecologia. 2014; 175(2):589-600.
  • [8]Agerbirk N, Olsen CE. Isoferuloyl derivatives of five seed glucosinolates in the crucifer genus Barbarea. Phytochemistry. 2011; 72(7):610-23.
  • [9]Badenes-Perez FR, Gershenzon J, Heckel DG. Insect attraction versus plant defense: young leaves high in glucosinolates stimulate oviposition by a specialist herbivore despite poor larval survival due to high saponin content. PLoS One. 2014; 9(4):e95766.
  • [10]van Leur H, Raaijmakers CE, van Dam NM. A heritable glucosinolate polymorphism within natural populations of Barbarea vulgaris. Phytochemistry. 2006; 67(12):1214-23.
  • [11]Dalby-Brown L, Olsen CE, Nielsen JK, Agerbirk N. Polymorphism for novel tetraglycosylated flavonols in an eco-model crucifer, Barbarea vulgaris. J Agric Food Chem. 2011; 59(13):6947-56.
  • [12]Toneatto F, Nielsen JK, Orgaard M, Hauser TP. Genetic and sexual separation between insect resistant and susceptible Barbarea vulgaris plants in Denmark. Mol Ecol. 2010; 19(16):3456-65.
  • [13]Badenes-Perez FR, Shelton AM, Nault BA. Evaluating trap crops for diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). J Econ Entomol. 2004; 97(4):1365-72.
  • [14]Badenes-Perez FR, Shelton AM, Nault BA. Using yellow rocket as a trap crop for diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol. 2005; 98(3):884-90.
  • [15]Badenes-Perez FR, Reichelt M, Gershenzon J, Heckel DG. Using plant chemistry and insect preference to study the potential of Barbarea (Brassicaceae) as a dead-end trap crop for diamondback moth (Lepidoptera: Plutellidae). Phytochemistry. 2014; 98:137-44.
  • [16]Lu JH, Liu SS, Shelton AM. Laboratory evaluations of a wild crucifer Barbarea vulgaris as a management tool for the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Bull Entomol Res. 2004; 94(6):509-16.
  • [17]Christensen S, Heimes C, Agerbirk N, Kuzina V, Olsen CE, Hauser TP. Different geographical distributions of two chemotypes of Barbarea vulgaris that differ in resistance to insects and a pathogen. J Chem Ecol. 2014; 40(5):491-501.
  • [18]Nielsen JK, Nagao T, Okabe H, Shinoda T. Resistance in the plant, Barbarea vulgaris, and counter-adaptations in flea beetles mediated by saponins. J Chem Ecol. 2010; 36(3):277-85.
  • [19]Nielsen NJ, Nielsen J, Staerk D. New resistance-correlated saponins from the insect-resistant crucifer Barbarea vulgaris. J Agric Food Chem. 2010; 58(9):5509-14.
  • [20]Shinoda T, Nagao T, Nakayama M, Serizawa H, Koshioka M, Okabe H et al.. Identification of a triterpenoid saponin from a crucifer, Barbarea vulgaris, as a feeding deterrent to the diamondback moth, Plutella xylostella. Journal Chem Ecol. 2002; 28(3):587-99.
  • [21]Augustin JM, Kuzina V, Andersen SB, Bak S. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry. 2011; 72(6):435-57.
  • [22]Sparg SG, Light ME, van Staden J. Biological activities and distribution of plant saponins. J Ethnopharmacol. 2004; 94(2–3):219-43.
  • [23]Fuchs H, Bachran D, Panjideh H, Schellmann N, Weng A, Melzig MF et al.. Saponins as tool for improved targeted tumor therapies. Curr Drug Targets. 2009; 10(2):140-51.
  • [24]Just MJ, Recio MC, Giner RM, Cuellar MJ, Manez S, Bilia AR et al.. Anti-inflammatory activity of unusual lupane saponins from Bupleurum fruticescens. Planta Med. 1998; 64(5):404-7.
  • [25]Augustin JM, Drok S, Shinoda T, Sanmiya K, Nielsen JK, Khakimov B et al.. UDP-glycosyltransferases from the UGT73C subfamily in Barbarea vulgaris catalyze sapogenin 3-O-glucosylation in saponin-mediated insect resistance. Plant Physiol. 2012; 160(4):1881-95.
  • [26]Kuzina V, Nielsen JK, Augustin JM, Torp AM, Bak S, Andersen SB. Barbarea vulgaris linkage map and quantitative trait loci for saponins, glucosinolates, hairiness and resistance to the herbivore Phyllotreta nemorum. Phytochemistry. 2011; 72(2–3):188-98.
  • [27]Pollier J, Moses T, Gonzalez-Guzman M, De Geyter N, Lippens S, Vanden Bossche R et al.. The protein quality control system manages plant defence compound synthesis. Nature. 2013; 504(7478):148-52.
  • [28]Moses T, Pollier J, Almagro L, Buyst D, Van Montagu M, Pedreno MA et al.. Combinatorial biosynthesis of sapogenins and saponins in Saccharomyces cerevisiae using a C-16alpha hydroxylase from Bupleurum falcatum. Proc Natl Acad Sci U S A. 2014; 111(4):1634-9.
  • [29]Wei X, Zhang X, Shen D, Wang H, Wu Q, Lu P et al.. Transcriptome analysis of Barbarea vulgaris infested with diamondback moth (Plutella xylostella) larvae. PLoS One. 2013; 8(5):e64481.
  • [30]Ehlting J, Chowrira SG, Mattheus N, Aeschliman DS, Arimura G, Bohlmann J. Comparative transcriptome analysis of Arabidopsis thaliana infested by diamond back moth (Plutella xylostella) larvae reveals signatures of stress response, secondary metabolism, and signalling. BMC Genomics. 2008; 9:154. BioMed Central Full Text
  • [31]Inagaki YS, Etherington G, Geisler K, Field B, Dokarry M, Ikeda K et al.. Investigation of the potential for triterpene synthesis in rice through genome mining and metabolic engineering. New Phytol. 2011; 191(2):432-48.
  • [32]Qi X, Bakht S, Leggett M, Maxwell C, Melton R, Osbourn A. A gene cluster for secondary metabolism in oat: implications for the evolution of metabolic diversity in plants. Proc Natl Acad Sci U S A. 2004; 101(21):8233-8.
  • [33]Qi X, Bakht S, Qin B, Leggett M, Hemmings A, Mellon F et al.. A different function for a member of an ancient and highly conserved cytochrome P450 family: from essential sterols to plant defense. Proc Natl Acad Sci U S A. 2006; 103(49):18848-53.
  • [34]Thimmappa R, Geisler K, Louveau T, O’Maille P, Osbourn A. Triterpene biosynthesis in plants. Annu Rev Plant Biol. 2014; 65:225-57.
  • [35]Kerchev PI, Fenton B, Foyer CH, Hancock RD. Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant Cell Environ. 2012; 35(2):441-53.
  • [36]Khakimov B, Amigo JM, Bak S, Engelsen SB. Plant metabolomics: resolution and quantification of elusive peaks in liquid chromatography-mass spectrometry profiles of complex plant extracts using multi-way decomposition methods. J Chromatogr A. 2012; 1266:84-94.
  • [37]Toneatto F, Hauser TP, Nielsen JK, Orgaard M. Genetic diversity and similarity in the Barbarea vulgaris complex (Brassicaceae). Nord J Bot. 2012; 30:506-12.
  • [38]Agerbirk N, Olsen CE, Heimes C, Christensen S, Bak S, Hauser TP: Multiple hydroxyphenethyl glucosinolate isomers and their tandem mass spectrometric distinction in a geographically structured polymorphism in the crucifer Barbarea vulgaris. Phytochemistry 2015, doi:10.1016/j.phytochem.2014.09.003.
  • [39]Hegi G. Illustrierte Flora von Mittel-Europa. Carl Hanser Verlag, Munich, Germany; 1958.
  • [40]Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I et al.. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011; 29(7):644-52.
  • [41]Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S et al.. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics. 2003; 19(5):651-2.
  • [42]Olson SA. EMBOSS opens up sequence analysis. European Molecular Biology Open Software Suite. Brief Bioinform. 2002; 3(1):87-91.
  • [43]Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008; 5(7):621-8.
  • [44]Romualdi C, Bortoluzzi S, D’Alessi F, Danieli GA. IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiol Genomics. 2003; 12(2):159-62.
  • [45]Abdi H. Bonferroni and Sidák corrections for multiple comparisons. Encyclopedia of measurement and statistics. Salkind NJ, editor. Sage, Thousand Oaks, CA, USA; 2007.
  • [46]Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K et al.. SNP detection for massively parallel whole-genome resequencing. Genome Res. 2009; 19(6):1124-32.
  • [47]MISA - MIcroSAtellite identification tool. http://pgrc. ipk-gatersleben.de/misa/ webcite
  • [48]Stewart CN, Via LE. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques. 1993; 14(5):748-50.
  • [49]Liu K, Muse SV. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics. 2005; 21(9):2128-9.
  • [50]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007; 24(8):1596-9.
  • [51]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods. 2001; 25(4):402-8.
  文献评价指标  
  下载次数:47次 浏览次数:14次