期刊论文详细信息
BMC Neuroscience
Time course and progression of wild type α-Synuclein accumulation in a transgenic mouse model
Birgit Hutter-Paier3  Manfred Windisch3  Eliezer Masliah1  Edward Rockenstein1  Heinrich Römer2  Roland Rabl3  Stefanie Flunkert3  Daniel Havas3  Jörg Neddens3  David Amschl3 
[1] Department of Pathology, University of California San Diego, La Jolla, CA, USA;Karl Franzens University, Institute of Zoology, Graz, 8010, Austria;QPS Austria GmbH, Parkring 12, Grambach, 8074, Austria
关键词: Transgene;    α-Synuclein;    Synucleinopathy;    Phosphorylation;    Parkinson’s disease;    Mouse model;    Motor deficit;    Immunofluorescence;    Behavior;   
Others  :  1140537
DOI  :  10.1186/1471-2202-14-6
 received in 2012-07-10, accepted in 2013-01-03,  发布年份 2013
PDF
【 摘 要 】

Background

Progressive accumulation of α-synuclein (α-Syn) protein in different brain regions is a hallmark of synucleinopathic diseases, such as Parkinson’s disease, dementia with Lewy bodies and multiple system atrophy. α-Syn transgenic mouse models have been developed to investigate the effects of α-Syn accumulation on behavioral deficits and neuropathology. However, the onset and progression of pathology in α-Syn transgenic mice have not been fully characterized. For this purpose we investigated the time course of behavioral deficits and neuropathology in PDGF-β human wild type α-Syn transgenic mice (D-Line) between 3 and 12 months of age.

Results

These mice showed progressive impairment of motor coordination of the limbs that resulted in significant differences compared to non-transgenic littermates at 9 and 12 months of age. Biochemical and immunohistological analyses revealed constantly increasing levels of human α-Syn in different brain areas. Human α-Syn was expressed particularly in somata and neurites of a subset of neocortical and limbic system neurons. Most of these neurons showed immunoreactivity for phosphorylated human α-Syn confined to nuclei and perinuclear cytoplasm. Analyses of the phenotype of α-Syn expressing cells revealed strong expression in dopaminergic olfactory bulb neurons, subsets of GABAergic interneurons and glutamatergic principal cells throughout the telencephalon. We also found human α-Syn expression in immature neurons of both the ventricular zone and the rostral migratory stream, but not in the dentate gyrus.

Conclusion

The present study demonstrates that the PDGF-β α-Syn transgenic mouse model presents with early and progressive accumulation of human α-Syn that is accompanied by motor deficits. This information is essential for the design of therapeutical studies of synucleinopathies.

【 授权许可】

   
2013 Amschl et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325042159118.pdf 2710KB PDF download
Figure 9. 318KB Image download
Figure 8. 170KB Image download
Figure 7. 204KB Image download
Figure 6. 299KB Image download
Figure 5. 175KB Image download
Figure 4. 85KB Image download
Figure 3. 91KB Image download
Figure 2. 48KB Image download
Figure 1. 78KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Goedert M: Parkinson’s disease and other alpha-synucleinopathies. Clin Chem Lab Med 2001, 39:308-312.
  • [2]Ibanez P, Bonnet AM, Debarges B, Lohmann E, Tison F, Pollak P, Agid Y, Durr A, Brice A: Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease. Lancet 2004, 364:1169-1171.
  • [3]Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, et al.: Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 2004, 364:1167-1169.
  • [4]Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, et al.: alpha-Synuclein locus triplication causes Parkinson’s disease. Science 2003, 302:841.
  • [5]Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L: Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 2000, 287:1265-1269.
  • [6]Rockenstein E, Mallory M, Hashimoto M, Song D, Shults CW, Lang I, Masliah E: Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res 2002, 68:568-578.
  • [7]Hashimoto M, Rockenstein E, Masliah E: Transgenic models of alpha-synuclein pathology: past, present, and future. Ann N Y Acad Sci 2003, 991:171-188.
  • [8]Shults CW, Rockenstein E, Crews L, Adame A, Mante M, Larrea G, Hashimoto M, Song D, Iwatsubo T, Tsuboi K, et al.: Neurological and neurodegenerative alterations in a transgenic mouse model expressing human alpha-synuclein under oligodendrocyte promoter: implications for multiple system atrophy. J Neurosci 2005, 25:10689-10699.
  • [9]Yamakado H, Moriwaki Y, Yamasaki N, Miyakawa T, Kurisu J, Uemura K, Inoue H, Takahashi M, Takahashi R: alpha-Synuclein BAC transgenic mice as a model for Parkinson’s disease manifested decreased anxiety-like behavior and hyperlocomotion. Neurosci Res 2012, 73:173-177.
  • [10]Rieker C, Dev KK, Lehnhoff K, Barbieri S, Ksiazek I, Kauffmann S, Danner S, Schell H, Boden C, Ruegg MA, et al.: Neuropathology in mice expressing mouse alpha-synuclein. PLoS One 2011, 6:e24834.
  • [11]Nuber S, Petrasch-Parwez E, Winner B, Winkler J, von Horsten S, Schmidt T, Boy J, Kuhn M, Nguyen HP, Teismann P, et al.: Neurodegeneration and motor dysfunction in a conditional model of Parkinson’s disease. J Neurosci 2008, 28:2471-2484.
  • [12]Richfield EK, Thiruchelvam MJ, Cory-Slechta DA, Wuertzer C, Gainetdinov RR, Caron MG, Di Monte DA, Federoff HJ: Behavioral and neurochemical effects of wild-type and mutated human alpha-synuclein in transgenic mice. Exp Neurol 2002, 175:35-48.
  • [13]Morris R: Thy-1 in developing nervous tissue. Dev Neurosci 1985, 7:133-160.
  • [14]Crews L, Spencer B, Desplats P, Patrick C, Paulino A, Rockenstein E, Hansen L, Adame A, Galasko D, Masliah E: Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLoS One 2010, 5:e9313.
  • [15]Price DL, Rockenstein E, Ubhi K, Phung V, MacLean-Lewis N, Askay D, Cartier A, Spencer B, Patrick C, Desplats P, et al.: Alterations in mGluR5 expression and signaling in Lewy body disease and in transgenic models of alpha-synucleinopathy–implications for excitotoxicity. PLoS One 2010, 5:e14020.
  • [16]Dufty BM, Warner LR, Hou ST, Jiang SX, Gomez-Isla T, Leenhouts KM, Oxford JT, Feany MB, Masliah E, Rohn TT: Calpain-cleavage of alpha-synuclein: connecting proteolytic processing to disease-linked aggregation. Am J Pathol 2007, 170:1725-1738.
  • [17]Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R, Adame A, Wyss-Coray T, Masliah E: Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci 2009, 29:13578-13588.
  • [18]Spencer B, Michael S, Shen J, Kosberg K, Rockenstein E, Patrick C, Adame A, Masliah E: Lentivirus Mediated Delivery of Neurosin Promotes Clearance of Wild-type alpha-Synuclein and Reduces the Pathology in an alpha-Synuclein Model of LBD. Mol Ther 2012.
  • [19]Yacoubian TA, Slone SR, Harrington AJ, Hamamichi S, Schieltz JM, Caldwell KA, Caldwell GA, Standaert DG: Differential neuroprotective effects of 14-3-3 proteins in models of Parkinson’s disease. Cell Death Dis 2010, 1:e2.
  • [20]Clark J, Clore EL, Zheng K, Adame A, Masliah E, Simon DK: Oral N-acetyl-cysteine attenuates loss of dopaminergic terminals in alpha-synuclein overexpressing mice. PLoS One 2010, 5:e12333.
  • [21]Koob AO, Ubhi K, Paulsson JF, Kelly J, Rockenstein E, Mante M, Adame A, Masliah E: Lovastatin ameliorates alpha-synuclein accumulation and oxidation in transgenic mouse models of alpha-synucleinopathies. Exp Neurol 2010, 221:267-274.
  • [22]Masliah E, Rockenstein E, Mante M, Crews L, Spencer B, Adame A, Patrick C, Trejo M, Ubhi K, Rohn TT, et al.: Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS One 2011, 6:e19338.
  • [23]Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JM, Armanini M, Ryan A, et al.: Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 2000, 25:239-252.
  • [24]Maroteaux L, Campanelli JT, Scheller RH: Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 1988, 8:2804-2815.
  • [25]Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, Barbour R, Huang J, Kling K, Lee M, et al.: Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 2006, 281:29739-29752.
  • [26]Chen L, Feany MB: Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nat Neurosci 2005, 8:657-663.
  • [27]Paleologou KE, Oueslati A, Shakked G, Rospigliosi CC, Kim HY, Lamberto GR, Fernandez CO, Schmid A, Chegini F, Gai WP, et al.: Phosphorylation at S87 is enhanced in synucleinopathies, inhibits alpha-synuclein oligomerization, and influences synuclein-membrane interactions. J Neurosci 2010, 30:3184-3198.
  • [28]Jinno S, Aika Y, Fukuda T, Kosaka T: Quantitative analysis of GABAergic neurons in the mouse hippocampus, with optical disector using confocal laser scanning microscope. Brain Res 1998, 814:55-70.
  • [29]Neddens J, Fish KN, Tricoire L, Vullhorst D, Shamir A, Chung W, Lewis DA, McBain CJ, Buonanno A: Conserved interneuron-specific ErbB4 expression in frontal cortex of rodents, monkeys, and humans: implications for schizophrenia. Biol Psychiatry 2011, 70:636-645.
  • [30]Neddens J, Buonanno A: Selective populations of hippocampal interneurons express ErbB4 and their number and distribution is altered in ErbB4 knockout mice. Hippocampus 2010, 20:724-744.
  • [31]Vullhorst D, Neddens J, Karavanova I, Tricoire L, Petralia RS, McBain CJ, Buonanno A: Selective expression of ErbB4 in interneurons, but not pyramidal cells, of the rodent hippocampus. J Neurosci 2009, 29:12255-12264.
  • [32]Anton ES, Ghashghaei HT, Weber JL, McCann C, Fischer TM, Cheung ID, Gassmann M, Messing A, Klein R, Schwab MH, et al.: Receptor tyrosine kinase ErbB4 modulates neuroblast migration and placement in the adult forebrain. Nat Neurosci 2004, 7:1319-1328.
  • [33]Flames N, Long JE, Garratt AN, Fischer TM, Gassmann M, Birchmeier C, Lai C, Rubenstein JL, Marin O: Short- and long-range attraction of cortical GABAergic interneurons by neuregulin-1. Neuron 2004, 44:251-261.
  • [34]Ghashghaei HT, Weber J, Pevny L, Schmid R, Schwab MH, Lloyd KC, Eisenstat DD, Lai C, Anton ES: The role of neuregulin-ErbB4 interactions on the proliferation and organization of cells in the subventricular zone. Proc Natl Acad Sci USA 2006, 103:1930-1935.
  • [35]Magavi SS, Leavitt BR, Macklis JD: Induction of neurogenesis in the neocortex of adult mice. Nature 2000, 405:951-955.
  • [36]Okamoto M, Hojo Y, Inoue K, Matsui T, Kawato S, McEwen BS, Soya H: Mild exercise increases dihydrotestosterone in hippocampus providing evidence for androgenic mediation of neurogenesis. Proc Natl Acad Sci USA 2012, 109:13100-13105.
  • [37]Ubhi K, Rockenstein E, Mante M, Inglis C, Adame A, Patrick C, Whitney K, Masliah E: Neurodegeneration in a transgenic mouse model of multiple system atrophy is associated with altered expression of oligodendroglial-derived neurotrophic factors. J Neurosci 2010, 30:6236-6246.
  • [38]Scalzo P, Kummer A, Bretas TL, Cardoso F, Teixeira AL: Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson’s disease. J Neurol 2010, 257:540-545.
  • [39]Haaxma CA, Bloem BR, Borm GF, Oyen WJ, Leenders KL, Eshuis S, Booij J, Dluzen DE, Horstink MW: Gender differences in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2007, 78:819-824.
  • [40]Deacon RM, Croucher A, Rawlins JN: Hippocampal cytotoxic lesion effects on species-typical behaviours in mice. Behav Brain Res 2002, 132:203-213.
  • [41]Szczypka MS, Kwok K, Brot MD, Marck BT, Matsumoto AM, Donahue BA, Palmiter RD: Dopamine production in the caudate putamen restores feeding in dopamine-deficient mice. Neuron 2001, 30:819-828.
  • [42]Gaffori O, Le Moal M: Disruption of maternal behavior and appearance of cannibalism after ventral mesencephalic tegmentum lesions. Physiol Behav 1979, 23:317-323.
  • [43]Nelson EE, Panksepp J: Brain substrates of infant-mother attachment: contributions of opioids, oxytocin, and norepinephrine. Neurosci Biobehav Rev 1998, 22:437-452.
  • [44]Sandyk R, Iacono RP, Bamford CR: The hypothalamus in Parkinson disease. Ital J Neurol Sci 1987, 8:227-234.
  • [45]Rinne UK, Rinne JK, Rinne JO, Laakso K, Tenovuo O, Lonnberg P, Koskinen V: Brain enkephalin receptors in Parkinson’s disease. J Neural Transm Suppl 1983, 19:163-171.
  • [46]Klucken J, Poehler AM, Ebrahimi-Fakhari D, Schneider J, Nuber S, Rockenstein E, Schlotzer-Schrehardt U, Hyman BT, McLean PJ, Masliah E, et al.: Alpha-synuclein aggregation involves a bafilomycin A 1-sensitive autophagy pathway. Autophagy 2012, 8:754-766.
  • [47]Mak SK, McCormack AL, Langston JW, Kordower JH, Di Monte DA: Decreased alpha-synuclein expression in the aging mouse substantia nigra. Exp Neurol 2009, 220:359-365.
  • [48]Adamczyk A, Solecka J, Strosznajder JB: Expression of alpha-synuclein in different brain parts of adult and aged rats. J Physiol Pharmacol 2005, 56:29-37.
  • [49]Sasahara M, Fries JW, Raines EW, Gown AM, Westrum LE, Frosch MP, Bonthron DT, Ross R, Collins T: PDGF B-chain in neurons of the central nervous system, posterior pituitary, and in a transgenic model. Cell 1991, 64:217-227.
  • [50]Sasahara A, Kott JN, Sasahara M, Raines EW, Ross R, Westrum LE: Platelet-derived growth factor B-chain-like immunoreactivity in the developing and adult rat brain. Brain Res Dev Brain Res 1992, 68:41-53.
  • [51]Neumann M, Kahle PJ, Giasson BI, Ozmen L, Borroni E, Spooren W, Muller V, Odoy S, Fujiwara H, Hasegawa M, et al.: Misfolded proteinase K-resistant hyperphosphorylated alpha-synuclein in aged transgenic mice with locomotor deterioration and in human alpha-synucleinopathies. J Clin Invest 2002, 110:1429-1439.
  • [52]Winner B, Rockenstein E, Lie DC, Aigner R, Mante M, Bogdahn U, Couillard-Despres S, Masliah E, Winkler J: Mutant alpha-synuclein exacerbates age-related decrease of neurogenesis. Neurobiol Aging 2008, 29:913-925.
  • [53]Fleming SM, Salcedo J, Fernagut PO, Rockenstein E, Masliah E, Levine MS, Chesselet MF: Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein. J Neurosci 2004, 24:9434-9440.
  • [54]Deacon RM: Assessing nest building in mice. Nat Protoc 2006, 1:1117-1119.
  文献评价指标  
  下载次数:175次 浏览次数:22次