期刊论文详细信息
BMC Microbiology
Novel screening assay for in vivo selection of Klebsiella pneumoniae genes promoting gastrointestinal colonisation
Carsten Struve2  Karen A Krogfelt1  Lene N Nielsen3  Erik J Boll1 
[1]Department of Microbiology and Infection Control, Statens Serum Institut, DK-2300, Copenhagen, Denmark
[2]WHO Collaborating Centre for Reference and Research on Escherichia and Klebsiella, Statens Serum Institut, DK-2300, Copenhagen, Denmark
[3]Present address: Department of Veterinary Pathobiology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark
关键词: Mouse model of gastrointestinal colonisation;    Genomic library;    Klebsiella pneumoniae;   
Others  :  1221763
DOI  :  10.1186/1471-2180-12-201
 received in 2012-02-21, accepted in 2012-09-06,  发布年份 2012
PDF
【 摘 要 】

Background

Klebsiella pneumoniae is an important opportunistic pathogen causing pneumonia, sepsis and urinary tract infections. Colonisation of the gastrointestinal (GI) tract is a key step in the development of infections; yet the specific factors important for K. pneumoniae to colonize and reside in the GI tract of the host are largely unknown. To identify K. pneumoniae genes promoting GI colonisation, a novel genomic-library-based approach was employed.

Results

Screening of a K. pneumoniae C3091 genomic library, expressed in E. coli strain EPI100, in a mouse model of GI colonisation led to the positive selection of five clones containing genes promoting persistent colonisation of the mouse GI tract. These included genes encoding the global response regulator ArcA; GalET of the galactose operon; and a cluster of two putative membrane-associated proteins of unknown function. Both ArcA and GalET are known to be involved in metabolic pathways in Klebsiella but may have additional biological actions beneficial to the pathogen. In support of this, GalET was found to confer decreased bile salt sensitivity to EPI100.

Conclusions

The present work establishes the use of genomic-library-based in vivo screening assays as a valuable tool for identification and characterization of virulence factors in K. pneumoniae and other bacterial pathogens.

【 授权许可】

   
2012 Boll et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150803133836535.pdf 694KB PDF download
Figure 5. 27KB Image download
Figure 2. 51KB Image download
Figure 3. 36KB Image download
Figure 2. 33KB Image download
Figure 1. 26KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 2.

Figure 5.

【 参考文献 】
  • [1]Podschun R, Ullmann U: Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998, 11(4):589-603.
  • [2]Ebringer A, Rashid T, Tiwana H, Wilson C: A possible link between Crohn’s disease and ankylosing spondylitis via Klebsiella infections. Clin Rheumatol 2007, 26(3):289-297.
  • [3]Lee CH, Leu HS, Wu TS, Su LH, Liu JW: Risk factors for spontaneous rupture of liver abscess caused by Klebsiella pneumoniae. Diagn Microbiol Infect Dis 2005, 52(2):79-84.
  • [4]Yang YS, Siu LK, Yeh KM, Fung CP, Huang SJ, Hung HC, Lin JC, Chang FY: Recurrent Klebsiella pneumoniae liver abscess: clinical and microbiological characteristics. J Clin Microbiol 2009, 47(10):3336-3339.
  • [5]Lee IA, Kim DH: Klebsiella pneumoniae increases the risk of inflammation and colitis in a murine model of intestinal bowel disease. Scand J Gastroenterol 2011, 46(6):684-693.
  • [6]Van’t Veen A, van der Zee A, Nelson J, Speelberg B, Kluytmans JA, Buiting AG: Outbreak of infection with a multiresistant Klebsiella pneumoniae strain associated with contaminated roll boards in operating rooms. J Clin Microbiol 2005, 43(10):4961-4967.
  • [7]Lytsy B, Sandegren L, Tano E, Torell E, Andersson DI, Melhus A: The first major extended-spectrum beta-lactamase outbreak in Scandinavia was caused by clonal spread of a multiresistant Klebsiella pneumoniae producing CTX-M-15. APMIS 2008, 116(4):302-308.
  • [8]Chagas TP, Seki LM, Cury JC, Oliveira JA, Dávila AM, Silva DM, Asensi MD: Multiresistance, beta-lactamase-encoding genes and bacterial diversity in hospital wastewater in Rio de Janeiro, Brazil. J Appl Microbiol 2011, 111(3):572-581.
  • [9]Montgomerie JZ: Epidemiology of Klebsiella and hospital-associated infections. Rev Infect Dis 1979, 1(5):736-753.
  • [10]De Champs C, Sauvant MP, Chanal C, Sirot D, Gazuy N, Malhuret R, Baguet JC, Sirot J: Prospective survey of colonization and infection caused by expanded-spectrum-beta-lactamase-producing members of the family Enterobacteriaceae in an intensive care unit. J Clin Microbiol 1989, 27(12):2887-2890.
  • [11]Freter R, Brickner H, Fekete J, Vickerman MM, Carey KE: Survival and implantation of Escherichia coli in the intestinal tract. Infect Immun 1983, 39(2):686-703.
  • [12]Maroncle N, Rich C, Forestier C: The role of Klebsiella pneumoniae urease in intestinal colonization and resistance to gastrointestinal stress. Res Microbiol 2006, 157(2):184-193.
  • [13]Struve C, Forestier C, Krogfelt KA: Application of a novel multi-screening signature-tagged mutagenesis assay for identification of Klebsiella pneumoniae genes essential in colonization and infection. Microbiology 2003, 149(Pt 1):167-176.
  • [14]Favre-Bonté S, Licht TR, Forestier C, Krogfelt KA: Klebsiella pneumoniae capsule expression is necessary for colonization of large intestines of streptomycin-treated mice. Infect Immun 1999, 67(11):6152-6156.
  • [15]Struve C, Krogfelt KA: Role of capsule in Klebsiella pneumoniae virulence: lack of correlation between in vitro and in vivo studies. FEMS Microbiol Lett 2003, 218(1):149-154.
  • [16]Nicolaou SA, Gaida SM, Papoutsakis ET: Coexisting/Coexpressing Genomic Libraries (CoGeL) identify interactions among distantly located genetic loci for developing complex microbial phenotypes. Nucleic Acids Res 2011, 39(22):e152.
  • [17]Borden JR, Jones SW, Indurthi D, Chen Y, Papoutsakis ET: A genomic-library based discovery of a novel, possibly synthetic, acid-tolerance mechanism in Clostridium acetobutylicum involving non-coding RNAs and ribosomal RNA processing. Metab Eng 2010, 12(3):268-281.
  • [18]Stahlhut SG, Schroll C, Harmsen M, Struve C, Krogfelt KA: Screening for genes involved in Klebsiella pneumoniae biofilm formation using a fosmid library. FEMS Immunol Med Microbiol 2010, 59(3):521-524.
  • [19]Hansmeier N, Albersmeier A, Tauch A, Damberg T, Ros R, Anselmetti D, Pühler A, Kalinowski J: The surface (S)-layer gene cspB of Corynebacterium glutamicum is transcriptionally activated by a LuxR-type regulator and located on a 6 kb genomic island absent from the type strain ATCC 13032. Microbiology 2006, 152(Pt 4):923-935.
  • [20]Peng HL, Fu TF, Liu SF, Chang HY: Cloning and expression of the Klebsiella pneumoniae galactose operon. J Biochem 1992, 112(5):604-608.
  • [21]Møller AK, Leatham MP, Conway T, Nuijten PJ, de Haan LA, Krogfelt KA, Cohen PS: An Escherichia coli MG1655 lipopolysaccharide deep-rough core mutant grows and survives in mouse cecal mucus but fails to colonize the mouse large intestine. Infect Immun 2003, 71(4):2142-2152.
  • [22]Rocha EP, Cornet E, Michel B: Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet 2005, 1(2):e15.
  • [23]Capaldo FN, Ramsey G, Barbour SD: Analysis of the growth of recombination-deficient strains of Escherichia coli K-12. J Bacteriol 1974, 118(1):242-249.
  • [24]Weissborn AC, Liu Q, Rumley MK, Kennedy EP: UTP: alpha-D-glucose-1-phosphate uridylyltransferase of Escherichia coli: isolation and DNA sequence of the galU gene and purification of the enzyme. J Bacteriol 1994, 176(9):2611-2618.
  • [25]Holden HM, Rayment I, Thoden JB: Structure and function of enzymes of the Leloir pathway for galactose metabolism. J Biol Chem 2003, 278(45):43885-43888.
  • [26]Ho TD, Waldor MK: Enterohemorrhagic Escherichia coli O157:H7 gal mutants are sensitive to bacteriophage P1 and defective in intestinal colonization. Infect Immun 2007, 75(4):1661-1666.
  • [27]Gunsalus RP, Park SJ: Aerobic-anaerobic gene regulation in Escherichia coli: control by the ArcAB and Fnr regulons. Res Microbiol 1994, 145(5–6):437-450.
  • [28]Sengupta N, Paul K, Chowdhury R: The global regulator ArcA modulates expression of virulence factors in Vibrio cholerae. Infect Immun 2003, 71(10):5583-5589.
  • [29]De Souza-Hart JA, Blackstock W, Di Modugno V, Holland IB, Kok M: Two-component systems in Haemophilus influenzae: a regulatory role for ArcA in serum resistance. Infect Immun 2003, 71(1):163-172.
  • [30]Petersen TN, Brunak S, von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011, 8(10):785-786.
  • [31]Henderson B, Martin A: Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immun 2011, 79(9):3476-3491.
  • [32]Oelschlaeger TA, Tall BD: Invasion of cultured human epithelial cells by Klebsiella pneumoniae isolated from the urinary tract. Infect Immun 1997, 65(7):2950-2958.
  • [33]Licht TR, Krogfelt KA, Cohen PS, Poulsen LK, Urbance J, Molin S: Role of lipopolysaccharide in colonization of the mouse intestine by Salmonella typhimurium studied by in situ hybridization. Infect Immun 1996, 64(9):3811-3817.
  • [34]Hentges DJ, Que JU, Casey SW, Stein AJ: The influence of streptomycin on colonization resistance in mice. Microecol Theor 1984, 14:53-62.
  文献评价指标  
  下载次数:39次 浏览次数:27次