期刊论文详细信息
BMC Genomics
Microarray transcriptional profiling of Arctic Mesorhizobium strain N33 at low temperature provides insights into cold adaption strategies
Serge Laberge3  Hani Antoun4  Linda Harris1  Anne Johnston1  Abdollah-Fardin Ghobakhlou2 
[1]Eastern Cereal & Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa K1A 0C6, Ontario, Canada
[2]Graduate Programs in Agri-Food Microbiology, Faculty of Agriculture and Food Sciences, Laval University, Quebec City G1V 0A6, Quebec, Canada
[3]Soils and Crops Research Development Center, Agriculture and Agri-Food Canada, Quebec City G1V 2 J3, Quebec, Canada
[4]Department of Soils and Agri-Food Engineering, Laval University, Quebec City G1V 0A6, Quebec, Canada
关键词: Arctic Mesorhizobium;    Nitrogen fixation;    Cold adaptation;    Quantitative PCR;    Transcriptomics;    Gene expression;    Microarray;    Genomic library;    α-proteobacteria;   
Others  :  1203960
DOI  :  10.1186/s12864-015-1611-4
 received in 2014-11-10, accepted in 2015-05-01,  发布年份 2015
PDF
【 摘 要 】

Background

Arctic Mesorhizobium strain N33 was isolated from nodules of the legume Oxytropis arctobia in Canada’s eastern Arctic. This symbiotic bacterium can grow at temperatures ranging from 0 to 30 °C, fix nitrogen at 10 °C, and is one of the best known cold-adapted rhizobia. Despite the economic potential of this bacterium for northern regions, the key molecular mechanisms of its cold adaptation remain poorly understood.

Results

Using a microarray printed with 5760 Arctic Mesorhizobium genomic clones, we performed a partial transcriptome analysis of strain N33 grown under eight different temperature conditions, including both sustained and transient cold treatments, compared with cells grown at room temperature. Cells treated under constant (4 and 10 °C) low temperatures expressed a prominent number of induced genes distinct from cells treated to short-term cold-exposure (<60 min), but exhibited an intermediate expression profile when exposed to a prolonged cold exposure (240 min). The most prominent up-regulated genes encode proteins involved in metabolite transport, transcription regulation, protein turnover, oxidoreductase activity, cryoprotection (mannitol, polyamines), fatty acid metabolism, and membrane fluidity. The main categories of genes affected in N33 during cold treatment are sugar transport and protein translocation, lipid biosynthesis, and NADH oxidoreductase (quinone) activity. Some genes were significantly down-regulated and classified in secretion, energy production and conversion, amino acid transport, cell motility, cell envelope and outer membrane biogenesis functions. This might suggest growth cessation or reduction, which is an important strategy to adjust cellular function and save energy under cold stress conditions.

Conclusion

Our analysis revealed a complex series of changes associated with cold exposure adaptation and constant growth at low temperatures. Moreover, it highlighted some of the strategies and different physiological states that Mesorhizobium strain N33 has developed to adapt to the cold environment of the Canadian high Arctic and has revealed candidate genes potentially involved in cold adaptation.

【 授权许可】

   
2015 Ghobakhlou et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150523032231782.pdf 2341KB PDF download
Figure 1. 30KB Image download
Fig. 4. 65KB Image download
Fig. 3. 74KB Image download
Fig. 2. 46KB Image download
Fig. 1. 90KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Figure 1.

【 参考文献 】
  • [1]Goldstein J, Pollitt NS, Inouye M. Major cold shock protein of Escherichia coli. Proc Natl Acad Sci U S A. 1990; 87(1):283-287.
  • [2]Phadtare S, Severinov K. RNA remodeling and gene regulation by cold shock proteins. RNA Biol. 2010; 7(6):788-795.
  • [3]Margesin R, Miteva V. Diversity and ecology of psychrophilic microorganisms. Res Microbiol. 2011; 162(3):346-361.
  • [4]Lopez-Maury L, Marguerat S, Bahler J. Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet. 2008; 9(8):583-593.
  • [5]Feller G, Gerday C. Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol. 2003; 1(3):200-208.
  • [6]Siddiqui KS, Cavicchioli R. Cold-adapted enzymes. Annu Rev Biochem. 2006; 75:403-433.
  • [7]Mykytczuk NC, Foote SJ, Omelon CR, Southam G, Greer CW, Whyte LG. Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. The ISME journal. 2013;7(6):1211-1226.
  • [8]Bakermans C, Bergholz PW, Rodrigues DF, Vishnivetskaya TA, Ayala-del-Rio HL JMT. Genomic and expression analyses of cold-adapted microorganisms. In: Polar microbiology: life in a deep freeze. Miller RV, Whyte LG, editors. ASM Press, Washington, D.C; 2012: p.126-155.
  • [9]Shivaji S, Prakash JS. How do bacteria sense and respond to low temperature? Arch Microbiol. 2010; 192(2):85-95.
  • [10]Suzuki I, Kanesaki Y, Mikami K, Kanehisa M, Murata N. Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol Microbiol. 2001; 40(1):235-244.
  • [11]Narberhaus F, Waldminghaus T, Chowdhury S. RNA thermometers. FEMS Microbiol Rev. 2006; 30(1):3-16.
  • [12]Trevors JT, Bej AK, Mojib N, Elsas JD, Overbeek L. Bacterial gene expression at low temperatures. Extremophiles. 2012; 16(2):167-176.
  • [13]Methe BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X et al.. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci U S A. 2005; 102(31):10913-10918.
  • [14]Wu Z, Qin L, Walker VK. Characterization and recombinant expression of a divergent ice nucleation protein from ‘Pseudomonas borealis’. Microbiology. 2009; 155(Pt 4):1164-1169.
  • [15]Jagannadham MV, Chowdhury C. Differential expression of membrane proteins helps Antarctic Pseudomonas syringae to acclimatize upon temperature variations. J Proteomics. 2012; 75(8):2488-2499.
  • [16]Jagannadham MV, Chattopadhyay MK, Subbalakshmi C, Vairamani M, Narayanan K, Rao CM et al.. Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum. Arch Microbiol. 2000; 173(5–6):418-424.
  • [17]Ray MK, Kumar GS, Shivaji S. Phosphorylation of membrane proteins in response to temperature in an Antarctic Pseudomonas syringae. Microbiology. 1994; 140(Pt 12):3217-3223.
  • [18]Chin JP, Megaw J, Magill CL, Nowotarski K, Williams JP, Bhaganna P et al.. Solutes determine the temperature windows for microbial survival and growth. Proc Natl Acad Sci U S A. 2010; 107(17):7835-7840.
  • [19]Piette F, Struvay C, Feller G. The protein folding challenge in psychrophiles: facts and current issues. Environ Microbiol. 2011; 13(8):1924-1933.
  • [20]Piette F, D’Amico S, Struvay C, Mazzucchelli G, Renaut J, Tutino ML et al.. Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Mol Microbiol. 2010; 76(1):120-132.
  • [21]Ferrer M, Chernikova TN, Yakimov MM, Golyshin PN, Timmis KN. Chaperonins govern growth of Escherichia coli at low temperatures. Nat Biotechnol. 2003; 21(11):1266-1267.
  • [22]Medigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN et al.. Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res. 2005; 15(10):1325-1335.
  • [23]Cairrao F, Cruz A, Mori H, Arraiano CM. Cold shock induction of RNase R and its role in the maturation of the quality control mediator SsrA/tmRNA. Mol Microbiol. 2003; 50(4):1349-1360.
  • [24]Ghobakhlou A, Laberge S, Antoun H, Wishart DS, Xia J, Krishnamurthy R et al.. Metabolomic analysis of cold acclimation of Arctic Mesorhizobium sp. strain N33. PLoS One. 2013; 8(12):e84801.
  • [25]Laguerre G, van Berkum P, Amarger N, Prévost D. Genetic diversity of rhizobial symbionts isolated from legume species within the genera Astragalus, Oxytropis, and Onobrychis. Appl Environ Microbiol. 1997; 63(12):4748-4758.
  • [26]Prévost D, Bordeleau LM, Caudry-Reznick S, Schulman HM, Antoun H. Characteristics of rhizobia isolated from three legumes indigenous to the Canadian high arctic: Astragalus alpinus, Oxytropis maydelliana, and Oxytropis arctobia. Plant Soil. 1987; 98(3):313-324.
  • [27]Cloutier J, Laberge S, Prevost D, Antoun H. Sequence and mutational analysis of the common nodBCIJ region of Rhizobium sp. (Oxytropis arctobia) strain N33, a nitrogen-fixing microsymbiont of both arctic and temperate legumes. Mol Plant Microbe Interact. 1996; 9(6):523-531.
  • [28]Cloutier J, Laberge S, Antoun H. Sequence and mutational analysis of the 6.7-kb region containing nodAFEG genes of Rhizobium sp. strain N33: evidence of DNA rearrangements. Mol Plant Microbe Interact. 1997; 10(3):401-406.
  • [29]Prévost D, Antoun H, Bordeleau LM. Effects of low temperatures on nitrogenase activity in sainfoin (Onobrychis viciifolia) nodulated by arctic rhizobia. FEMS Microbiol Lett. 1987; 45(4):205-210.
  • [30]Prévost D, Bordeleau LM, Michaud R, Lafrenière C, Waddington J, Biederbeck VO. Nitrogen fixation efficiency of cold-adapted rhizobia on sainfoin (Onobrychis viciifolia): laboratory and field evaluation. In: Symbiotic nitrogen fixation. Graham PH, Sadowsky MJ, Vance CP, editors. Springer, Netherlands; 1994: p.171-176.
  • [31]Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al.. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002; 3(7):RESEARCH0034. BioMed Central Full Text
  • [32]Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M et al.. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009; 55(4):611-622.
  • [33]Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. e36;30(9).
  • [34]Miron M, Woody O, Marcil A, Murie C, Sladek R, Nadon R. A methodology for global validation of microarray experiments. BMC Bioinformatics. 2006; 7(1):333. BioMed Central Full Text
  • [35]Rodrigues DF, Ivanova N, He Z, Huebner M, Zhou J, Tiedje JM. Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: a genome and transcriptome approach. BMC Genomics. 2008; 9:547. BioMed Central Full Text
  • [36]Galperin MY, Nikolskaya AN, Koonin EV. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett. 2001; 203(1):11-21.
  • [37]Mascher T, Helmann JD, Unden G. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev. 2006; 70(4):910-938.
  • [38]Bakermans C, Nealson KH. Relationship of critical temperature to macromolecular synthesis and growth yield in Psychrobacter cryopegella. J Bacteriol. 2004; 186(8):2340-2345.
  • [39]Giuliani S, Frank A, Corgliano D, Seifert C, Hauser L, Collart F. Environment sensing and response mediated by ABC transporters. BMC Genomics. 2011; 12 Suppl 1:S8. BioMed Central Full Text
  • [40]Mauchline T, Fowler J, East A, Sartor A, Zaheer R, Hosie A et al.. Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome. Proc Natl Acad Sci U S A. 2006; 103:17933-17938.
  • [41]Kawahara H. Cryoprotectants and ice-binding proteins. In: Psychrophiles: from biodiversity to biotechnology. Margesin R, Schinner F, Marx J-C, Gerday C, editors. Springer, Berlin Heidelberg; 2008: p.229-246.
  • [42]Chattopadhyay MK. Mechanism of bacterial adaptation to low temperature. J Biosci. 2006; 31(1):157-165.
  • [43]Shimoda Y, Mitsui H, Kamimatsuse H, Minamisawa K, Nishiyama E, Ohtsubo Y et al.. Construction of signature-tagged mutant library in Mesorhizobium loti as a powerful tool for functional genomics. DNA Res. 2008; 15(5):297-308.
  • [44]D’Amico S, Collins T, Marx JC, Feller G, Gerday C. Psychrophilic microorganisms: challenges for life. EMBO Rep. 2006; 7(4):385-389.
  • [45]Loschi L, Brokx SJ, Hills TL, Zhang G, Bertero MG, Lovering AL et al.. Structural and biochemical identification of a novel bacterial oxidoreductase. J Biol Chem. 2004; 279(48):50391-50400.
  • [46]Cartier G, Lorieux F, Allemand F, Dreyfus M, Bizebard T. Cold adaptation in DEAD-box proteins. Biochemistry. 2010; 49(12):2636-2646.
  • [47]Scherer S, Neuhaus K. Life at low temperatures. Prokaryotes. 2006; 2:210-262.
  • [48]Berger F, Normand P, Potier P. capA, a cspA-like gene that encodes a cold acclimation protein in the psychrotrophic bacterium Arthrobacter globiformis SI55. J Bacteriol. 1997; 179(18):5670-5676.
  • [49]Scheurwater E, Reid CW, Clarke AJ. Lytic transglycosylases: bacterial space-making autolysins. Int J Biochem Cell Biol. 2008; 40(4):586-591.
  • [50]Bergholz PW, Bakermans C, Tiedje JM. Psychrobacter arcticus 273–4 uses resource efficiency and molecular motion adaptations for subzero temperature growth. J Bacteriol. 2009; 191(7):2340-2352.
  • [51]Drouin P, Prevost D, Antoun H. Physiological adaptation to low temperatures of strains of Rhizobium leguminosarum bv. viciae associated with Lathyrus spp.(1). FEMS Microbiol Ecol. 2000; 32(2):111-120.
  • [52]Price PB, Sowers T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci U S A. 2004; 101(13):4631-4636.
  • [53]Krembs C, Deming JW. The role of exopolymers in microbial adaptation to sea ice. Psychrophiles: from Biodiversity to Biotechnology. 2008;(Pt3):247-264.
  • [54]Wilson DN, Nierhaus KH. The how and Y of cold shock. Nat Struct Mol Biol. 2004; 11(11):1026-1028.
  • [55]Economou A. Bacterial preprotein translocase: mechanism and conformational dynamics of a processive enzyme. Mol Microbiol. 1998; 27(3):511-518.
  • [56]Price PB. Low-temperature limits of microbial growth and metabolism. In: Polar microbiology: life in a deep freeze. Miller RV, Whyte LG, editors. ASM Press, Washington DC; 2012: p.243-264.
  • [57]Gage DJ. Infection and invasion of roots by symbiotic, nitrogen-fixing Rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev. 2004; 68(2):280-300.
  • [58]Kawaharada Y, Eda S, Minamisawa K, Mitsui H. A Mesorhizobium loti mutant with reduced glucan content shows defective invasion of its host plant Lotus japonicus. Microbiology. 2007; 153(Pt 12):3983-3993.
  • [59]Prévost D, Bromfield ESP. Effect of low root temperature on symbiotic nitrogen fixation and competitive nodulation of Onobrychis viciifolia (sainfoin) by strains of arctic and temperate rhizobia. Biol Fertil Soils. 1991; 12(3):161-164.
  • [60]Prévost D, Drouin P, Laberge S, Bertrand A, Cloutier J, Lévesque G. Cold-adapted rhizobia for nitrogen fixation in temperate regions. Can J Bot. 2003; 81(12):1153-1161.
  • [61]Vincent JM. A manual for the practical study of root nodule bacteria. IBP Handbook No 15. Blackwell Scientific Publications, Oxford, England; 1970.
  • [62]Kneen BE, Larue TA. Congo Red absorption by Rhizobium leguminosarum. Appl Environ Microbiol. 1983; 45(1):340-342.
  • [63]Edwards U, Rogall T, Blocker H, Emde M, Bottger EC. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 1989; 17(19):7843-7853.
  • [64]Kingston RE. Preparation and analysis of RNA. In: Current protocols in molecular biology. John Wiley & Sons, Inc.; 2012;(98)4.0:4.0.1–4.0.2. http://onlinelibrary.wiley.com/doi/10.1002/0471142727.mb0908s36/abstract
  • [65]Laberge S, Gagnon Y, Bordeleau LM, Lapointe J. Cloning and sequencing of the gltX gene, encoding the glutamyl-tRNA synthetase of Rhizobium meliloti A2. J Bacteriol. 1989; 171(7):3926-3932.
  • [66]Barnett MJ, Toman CJ, Fisher RF, Long SR. A dual-genome Symbiosis Chip for coordinate study of signal exchange and development in a prokaryote-host interaction. Proc Natl Acad Sci U S A. 2004; 101(47):16636-16641.
  • [67]The Gene Expression Omnibus. [http://www.ncbi.nlm.nih.gov/geo/].
  • [68]Smyth GK, Speed T. Normalization of cDNA microarray data. Methods (San Diego, Calif). 2003; 31(4):265-273.
  • [69]Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. e15;30(4).
  • [70]Allison D, Cui X, Page G, Sabripour M. Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet. 2006; 7:55-65.
  • [71]Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995; 57(1):289-300.
  • [72]Riva A, Carpentier AS, Torresani B, Henaut A. Comments on selected fundamental aspects of microarray analysis. Comput Biol Chem. 2005; 29(5):319-336.
  • [73]Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C et al.. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet. 2001; 29(4):365-371.
  • [74]Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007; 35(Web Server issue):W71-74.
  • [75]Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protocols. 2008; 3(6):1101-1108.
  • [76]Binns D, Dimmer E, Huntley R, Barrell D, O’Donovan C, Apweiler R. QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics. 2009; 25(22):3045-3046.
  • [77]Tatusov R, Koonin E, Lipman D. A genomic perspective on protein families. Science. 1997; 278:631-637.
  • [78]Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS et al.. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 2001; 29(1):22-28.
  文献评价指标  
  下载次数:27次 浏览次数:38次