期刊论文详细信息
BMC Neuroscience
Death Associated Protein Kinase (DAPK) -mediated neurodegenerative mechanisms in nematode excitotoxicity
Itzhak Mano5  Daniel Asemota3  Shirley Mei3  Maha Salama3  Tauhid Mahmud2  JunHyung An2  BakKeung Ko2  Uzair Amjad1  Towfiq Ahmed2  Katherine Genevieve Feldmann5  John S Del Rosario4 
[1] Undergraduate program in Biochemistry, CCNY, CUNY, New York, NY, USA;Undergraduate program in Biology, CCNY, CUNY, New York, NY, USA;Bs/MD program, Sophie Davis SBE, CCNY, CUNY, New York, NY, USA;MS program in Biology, CCNY, CUNY, New York, NY, USA;PhD program in Neuroscience, the CUNY Graduate Center, New York, NY, USA
关键词: Peptidyl prolyl isomerase Pin1;    Autophagy;    Death-Associated protein kinase;    Neurodegeneration;    Excitotoxicity;    Glutamate;    Ischemia;   
Others  :  1210194
DOI  :  10.1186/s12868-015-0158-2
 received in 2014-10-01, accepted in 2015-03-31,  发布年份 2015
PDF
【 摘 要 】

Background

Excitotoxicity (the toxic overstimulation of neurons by the excitatory transmitter Glutamate) is a central process in widespread neurodegenerative conditions such as brain ischemia and chronic neurological diseases. Many mechanisms have been suggested to mediate excitotoxicity, but their significance across diverse excitotoxic scenarios remains unclear. Death Associated Protein Kinase (DAPK), a critical molecular switch that controls a range of key signaling and cell death pathways, has been suggested to have an important role in excitotoxicity. However, the molecular mechanism by which DAPK exerts its effect is controversial. A few distinct mechanisms have been suggested by single (sometimes contradicting) studies, and a larger array of potential mechanisms is implicated by the extensive interactome of DAPK.

Results

Here we analyze a well-characterized model of excitotoxicity in the nematode C. elegans to show that DAPK is an important mediator of excitotoxic neurodegeneration across a large evolutionary distance. We further show that some proposed mechanisms of DAPK’s action (modulation of synaptic strength, involvement of the DANGER-related protein MAB-21, and autophagy) do not have a major role in nematode excitotoxicity. In contrast, Pin1/PINN-1 (a DAPK interaction-partner and a peptidyl-prolyl isomerase involved in chronic neurodegenerative conditions) suppresses neurodegeneration in our excitotoxicity model.

Conclusions

Our studies highlight the prominence of DAPK and Pin1/PINN-1 as conserved mediators of cell death processes in diverse scenarios of neurodegeneration.

【 授权许可】

   
2015 Del Rosario et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150603025104998.pdf 2374KB PDF download
Figure 6. 62KB Image download
Figure 5. 36KB Image download
Figure 4. 54KB Image download
Figure 3. 70KB Image download
Figure 2. 59KB Image download
Figure 1. 31KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Rothman SM, Olney JW: Glutamate and the pathophysiology of hypoxic–ischemic brain damage. Ann Neurol 1986, 19(2):105-11.
  • [2]Choi DW: Excitotoxic Cell Death. J Neurobiol 1992, 23(9):1261-76.
  • [3]Moskowitz MA, Lo EH, Iadecola C: The Science of Stroke: Mechanisms in Search of Treatments. Neuron 2010, 67(2):181-98.
  • [4]Tymianski M: Emerging mechanisms of disrupted cellular signaling in brain ischemia. Nat Neurosci 2011, 14(11):1369-73.
  • [5]Danbolt NC: Glutamate uptake. Prog Neurobiol 2001, 65(1):1-105.
  • [6]Rossi DJ, Oshima T, Attwell D: Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 2000, 403(6767):316-21.
  • [7]Tzingounis AV, Wadiche JI: Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci 2007, 8(12):935-47.
  • [8]Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, et al.: Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010, 62(3):405-96.
  • [9]Ikonomidou C, Turski L: Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 2002, 1(6):383-6.
  • [10]Lai TW, Zhang S, Wang YT: Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Prog Neurobiol 2014, 115:157-88.
  • [11]Bialik S, Kimchi A: The death-associated protein kinases: structure, function, and beyond. Annu Rev Biochem 2006, 75:189-210.
  • [12]Shiloh R, Bialik S, Kimchi A: The DAPK family: a structure-function analysis. Apoptosis 2014, 19(2):286-97.
  • [13]Nair S, Hagberg H, Krishnamurthy R, Thornton C, Mallard C: Death associated protein kinases: molecular structure and brain injury. Int J Mol Sci 2013, 14(7):13858-72.
  • [14]Fujita Y, Yamashita T: Role of DAPK in neuronal cell death. Apoptosis 2014, 19(2):339-45.
  • [15]Deiss LP, Feinstein E, Berissi H, Cohen O, Kimchi A: Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev 1995, 9(1):15-30.
  • [16]Maiuri MC, Zalckvar E, Kimchi A, Kroemer G: Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007, 8(9):741-52.
  • [17]Bialik S, Kimchi A: Lethal weapons: DAP-kinase, autophagy and cell death DAP-kinase regulates autophagy. Curr Opin Cell Biol 2009, 22(2):199-205.
  • [18]Bialik S, Kimchi A: The DAP-kinase interactome. Apoptosis 2014, 19(2):316-28.
  • [19]Shamloo M, Soriano L, Wieloch T, Nikolich K, Urfer R, Oksenberg D: Death-associated protein kinase is activated by dephosphorylation in response to cerebral ischemia. J Biol Chem 2005, 280(51):42290-9.
  • [20]Velentza AV, Wainwright MS, Zasadzki M, Mirzoeva S, Schumacher AM, Haiech J, et al.: An aminopyridazine-based inhibitor of a pro-apoptotic protein kinase attenuates hypoxia-ischemia induced acute brain injury. Bioorg Med Chem Lett 2003, 13(20):3465-70.
  • [21]Rami A: Autophagy in neurodegeneration: firefighter and/or incendiarist? Neuropathol App Neurobiol 2009, 35(5):449-61.
  • [22]van Rossum DB, Patterson RL, Cheung KH, Barrow RK, Syrovatkina V, Gessell GS, et al.: DANGER, a novel regulatory protein of inositol 1,4,5-trisphosphate-receptor activity. J Biol Chem 2006, 281(48):37111-6.
  • [23]Kang BN, Ahmad AS, Saleem S, Patterson RL, Hester L, Dore S, et al.: Death-associated protein kinase-mediated cell death modulated by interaction with DANGER. J Neurosci 2010, 30(1):93-8.
  • [24]Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian MM, et al.: DAPK1 Interaction with NMDA Receptor NR2B Subunits Mediates Brain Damage in Stroke. Cell 2010, 140(2):222-34.
  • [25]Hardingham GE, Bading H: Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 2010, 11(10):682-96.
  • [26]Wroge CM, Hogins J, Eisenman L, Mennerick S: Synaptic NMDA receptors mediate hypoxic excitotoxic death. J Neurosci 2012, 32(19):6732-42.
  • [27]Zhou X, Hollern D, Liao J, Andrechek E, Wang H: NMDA receptor-mediated excitotoxicity depends on the coactivation of synaptic and extrasynaptic receptors. Cell Death Dis 2013, 4:e560.
  • [28]Paoletti P, Bellone C, Zhou Q: NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 2013, 14(6):383-400.
  • [29]Schori H, Yoles E, Wheeler LA, Raveh T, Kimchi A, Schwartz M: Immune-related mechanisms participating in resistance and susceptibility to glutamate toxicity. Eur J Neurosci 2002, 16(4):557-64.
  • [30]Cull-Candy S, Kelly L, Farrant M: Regulation of Ca2+ −permeable AMPA receptors: synaptic plasticity and beyond. Curr Opin Neurobiol 2006, 16(3):288-97.
  • [31]Kwak S, Weiss JH: Calcium-permeable AMPA channels in neurodegenerative disease and ischemia. Curr Opin Neurobiol 2006, 16(3):281-7.
  • [32]Liu SJ, Zukin RS: Ca2+ −permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci 2007, 30(3):126-34.
  • [33]Lettre G, Hengartner MO: Developmental apoptosis in C. elegans: a complex CEDnario. Nat Rev Mol Cell Biol 2006, 7(2):97-108.
  • [34]Conradt B: Genetic control of programmed cell death during animal development. Annu Rev Genet 2009, 43:493-523.
  • [35]Samara C, Tavernarakis N: Autophagy and cell death in Caenorhabditis elegans. Curr Pharm Des 2008, 14(2):97-115.
  • [36]Melendez A, Levine B: Autophagy in C. elegans. WormBook.org 2009, 1-26.
  • [37]Mano I, Driscoll M: C. elegans Glutamate Transporter Deletion Induces AMPA-Receptor/Adenylyl Cyclase 9-Dependent Excitotoxicity. J Neurochem 2009, 108(6):1373-84.
  • [38]Mano I, Straud S, Driscoll M: Caenorhabditis elegans Glutamate Transporters Influence Synaptic Function and Behavior at Sites Distant from the Synapse. J Biol Chem 2007, 282(47):34412-9.
  • [39]Berger AJ, Hart AC, Kaplan JM: Galphas-induced neurodegeneration in Caenorhabditis elegans. J Neurosci 1998, 18(8):2871-80.
  • [40]Mojsilovic-Petrovic J, Nedelsky N, Boccitto M, Mano I, Georgiades SN, Zhou W, et al.: FOXO3a is broadly neuroprotective in vitro and in vivo against insults implicated in motor neuron diseases. J Neurosci 2009, 29(25):8236-47.
  • [41]Tehrani N, Del Rosario J, Dominguez M, Kalb R, Mano I: The Insulin/IGF Signaling Regulators Cytohesin/GRP-1 and PIP5K/PPK-1 Modulate Susceptibility to Excitotoxicity in C. elegans. PLoS One 2014, 9(11):e113060.
  • [42]Tong A, Lynn G, Ngo V, Wong D, Moseley SL, Ewbank JJ, et al.: Negative regulation of Caenorhabditis elegans epidermal damage responses by death-associated protein kinase. Proc Natl Acad Sci U S A 2009, 106(5):1457-61.
  • [43]Kang C, Avery L: Death-associated protein kinase (DAPK) and signal transduction: fine-tuning of autophagy in Caenorhabditis elegans homeostasis. FEBS J 2010, 277(1):66-73.
  • [44]Chuang M, Chisholm A: Insights into the functions of the death associated protein kinases from C. elegans and other invertebrates. Apoptosis 2014, 19(2):392-7.
  • [45]Kang C, You YJ, Avery L: Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev 2007, 21(17):2161-71.
  • [46]Tian JH, Das S, Sheng ZH: Ca2+ −dependent phosphorylation of syntaxin-1A by the death-associated protein (DAP) kinase regulates its interaction with Munc18. J Biol Chem 2003, 278(28):26265-74.
  • [47]Südhof Thomas C: Neurotransmitter Release: The Last Millisecond in the Life of a Synaptic Vesicle. Neuron 2013, 80(3):675-90.
  • [48]Mahoney TR, Luo S, Nonet ML: Analysis of synaptic transmission in Caenorhabditis elegans using an aldicarb-sensitivity assay. Nat Protocols 2006, 1(4):1772-7.
  • [49]Martin JA, Hu Z, Fenz KM, Fernandez J, Dittman JS: Complexin Has Opposite Effects on Two Modes of Synaptic Vesicle Fusion. Curr Biol 2011, 21(2):97-105.
  • [50]Zheng Y, Brockie PJ, Mellem JE, Madsen DM, Maricq AV: Neuronal control of locomotion in C. elegans is modified by a dominant mutation in the GLR-1 ionotropic glutamate receptor. Neuron 1999, 24(2):347-61.
  • [51]Burbea M, Dreier L, Dittman JS, Grunwald ME, Kaplan JM: Ubiquitin and AP180 Regulate the Abundance of GLR-1 Glutamate Receptors at Postsynaptic Elements in C. elegans. Neuron 2002, 35(1):107-20.
  • [52]Chang HC, Rongo C: Cytosolic tail sequences and subunit interactions are critical for synaptic localization of glutamate receptors. J Cell Sci 2005, 118(Pt 9):1945-56.
  • [53]Chow KL, Hall DH, Emmons SW: The mab-21 gene of Caenorhabditis elegans encodes a novel protein required for choice of alternate cell fates. Development 1995, 121(11):3615-26.
  • [54]Kimura Y, Corcoran EE, Eto K, Gengyo-Ando K, Muramatsu MA, Kobayashi R, et al.: A CaMK cascade activates CRE-mediated transcription in neurons of Caenorhabditis elegans. EMBO Rep 2002, 3(10):962-6.
  • [55]Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M, et al.: DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep 2009, 10(3):285-92.
  • [56]Levine B, Kroemer G: Autophagy in the pathogenesis of disease. Cell 2008, 132(1):27-42.
  • [57]Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, et al.: Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 2010, 90(4):1383-435.
  • [58]Toth ML, Simon P, Kovacs AL, Vellai T: Influence of autophagy genes on ion-channel-dependent neuronal degeneration in Caenorhabditis elegans. J Cell Sci 2007, 120(6):1134-41.
  • [59]Vellai T, Toth ML, Kovacs AL: Janus-faced autophagy: a dual role of cellular self-eating in neurodegeneration? Autophagy 2007, 3(5):461-3.
  • [60]Samara C, Syntichaki P, Tavernarakis N: Autophagy is required for necrotic cell death in Caenorhabditis elegans. Cell Death Differ 2008, 15(1):105-12.
  • [61]Driscoll M, Gerstbrein B: Dying for a cause: invertebrate genetics takes on human neurodegeneration. Nat Rev Genet 2003, 4(3):181-94.
  • [62]Maiuri MC, Le Toumelin G, Criollo A, Rain J-C, Gautier F, Juin P, et al.: Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1. EMBO J 2007, 26(10):2527-39.
  • [63]Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ: Potential therapeutic applications of autophagy. Nat Rev Drug Discov 2007, 6(4):304-12.
  • [64]Sudhof TC: The synaptic vesicle cycle. Annu Rev Neurosci 2004, 27:509-47.
  • [65]Edwards RH: The Neurotransmitter Cycle and Quantal Size. Neuron 2007, 55(6):835-58.
  • [66]Saroussi S, Nelson N: Vacuolar H+ −ATPase—an enzyme for all seasons. Pflugers Arch - Eur J Physiol 2009, 457(3):581-7.
  • [67]Wulf G, Finn G, Suizu F, Lu KP: Phosphorylation-specific prolyl isomerization: is there an underlying theme? Nat Cell Biol 2005, 7(5):435-41.
  • [68]Lu KP, Finn G, Lee TH, Nicholson LK: Prolyl cis-trans isomerization as a molecular timer. Nat Chem Biol 2007, 3(10):619-29.
  • [69]Lu KP, Zhou XZ: The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol 2007, 8(11):904-16.
  • [70]Keune WJ, Jones DR, Divecha N: PtdIns5P and Pin1 in oxidative stress signaling. Ad Biol Regulation 2013, 53(2):179-89.
  • [71]Lu Z, Hunter T: Prolyl isomerase Pin1 in cancer. Cell Res 2014, 24(9):1033-49.
  • [72]Westmark PR, Westmark CJ, Wang S, Levenson J, O’Riordan KJ, Burger C, et al.: Pin1 and PKMzeta sequentially control dendritic protein synthesis. Sci Signal 2010, 3(112):ra18.
  • [73]Sacktor TC: PINing for things past. Sci Signal 2010, 3(112):e9.
  • [74]Liou YC, Sun A, Ryo A, Zhou XZ, Yu ZX, Huang HK, et al.: Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 2003, 424(6948):556-61.
  • [75]Pastorino L, Sun A, Lu P-J, Zhou XZ, Balastik M, Finn G, et al.: The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-[beta] production. Nature 2006, 440(7083):528-34.
  • [76]Lee Tae H, Chen C-H, Suizu F, Huang P, Schiene-Fischer C, Daum S, et al.: Death-Associated Protein Kinase 1 Phosphorylates Pin1 and Inhibits Its Prolyl Isomerase Activity and Cellular Function. Mol Cell 2011, 42(2):147-59.
  • [77]Fasseas MK, Dimou M, Katinakis P: The Caenorhabditis elegans parvulin gene subfamily and their expression under cold or heat stress along with the fkb subfamily. Biochem Biophys Res Commun 2012, 423(3):520-5.
  • [78]Keune WJ, Jones DR, Bultsma Y, Sommer L, Zhou XZ, Lu KP, et al.: Regulation of phosphatidylinositol-5-phosphate signaling by Pin1 determines sensitivity to oxidative stress. Sci Signal 2012, 5(252):ra86.
  • [79]Brockie PJ, Mellem JE, Hills T, Madsen DM, Maricq AV: The C. elegans glutamate receptor subunit NMR-1 is required for slow NMDA-activated currents that regulate reversal frequency during locomotion. Neuron 2001, 31(4):617-30.
  文献评价指标  
  下载次数:37次 浏览次数:7次