期刊论文详细信息
BMC Pregnancy and Childbirth
Variation in endoglin pathway genes is associated with preeclampsia: a case–control candidate gene association study
Yvette P Conley4  Lauren Terhorst4  Arun Jeyabalan1  Sandra A Founds3  James M Roberts2  Mandy J Bell3 
[1]Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
[2]University of Pittsburgh Clinical and Translational Research, Pittsburgh, PA, USA
[3]Magee-Womens Research Institute and Foundation, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
[4]University of Pittsburgh School of Nursing, 3500 Victoria Street, 440 Victoria Building, Pittsburgh, PA, 15261, USA
关键词: SNP;    Preeclampsia;    Genetic association study;    Endoglin;   
Others  :  1138118
DOI  :  10.1186/1471-2393-13-82
 received in 2012-12-19, accepted in 2013-03-15,  发布年份 2013
PDF
【 摘 要 】

Background

Preeclampsia is a hypertensive, multi-system pregnancy disorder whose pathophysiology remains unclear. Elevations in circulating soluble endoglin (sENG) and placental/blood ENG mRNA expression antedate the clinical onset of preeclampsia. This study investigated if endoglin (ENG) pathway genetic variation was also associated with the development of preeclampsia.

Methods

We used a case–control candidate gene association design. Data from 355 white (181 preeclampsia cases/174 controls) and 60 black (30 preeclampsia cases/30 controls) women matched on ancestry, age, and parity were analyzed. Tagging single nucleotide polymorphisms (tSNPs) and potentially functional SNPs in ENG, TGFβ1, TGFβR1, ALK1, and TGFβR2 were genotyped with iPLEX® and TaqMan®. Chi-square or Fisher’s exact tests were used to conduct allele/genotype/haplotype tests in white/black subgroups separately. Odds ratios were computed with binary logistic regression for tSNPs with significant genotype tests.

Results

Of the 49 SNPs evaluated, variation in two ENG tSNPs (rs11792480, rs10121110) and one TGFβR2 tSNP (rs6550005) was associated with preeclampsia in white women (P <0.05, each). In black women, variation in two TGFβ1 tSNPs (rs4803455, rs4803457), one TGFβR1 tSNP (rs10739778), and three TGFβR2 tSNPs (rs6550005, rs1346907, rs877572) was associated with preeclampsia (P <0.05, each). Further evaluation of ENG tSNP rs10121110 revealed that white women inheriting the AA genotype were 2.29 times more likely to develop preeclampsia compared to the GG genotype (P = 0.008, [99% CI: 1.02 to 5.13]). For black women, similar evaluation of TGFβ1 tSNP rs4803457 revealed women inheriting the CT genotype were 7.44 times more likely to develop preeclampsia than those with the CC genotype (P = 0.005, [99% CI: 1.19 to 46.41]).

Conclusions

ENG pathway genetic variation is associated with preeclampsia. Different ENG pathway genes may be involved in preeclampsia development among white and black women. Additional studies are needed to validate these findings and to determine if genetic variation in ENG pathway genes impacts ENG and sENG levels in preeclampsia.

【 授权许可】

   
2013 Bell et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150318200512480.pdf 339KB PDF download
Figure 1. 43KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Roberts JM, Cooper DW: Pathogenesis and genetics of pre-eclampsia. Lancet 2001, 357:53-56.
  • [2]American College of Obstetricians and Gynecologists: ACOG practice bulletin: diagnosis and management of preeclampsia and eclampsia (No. 33). Obstet Gynecol 2002, 99:159-167.
  • [3]National Heart, Lung, and Blood Institute National High Blood Pressure Education Program: Report of the national high blood pressure education program working group on high blood pressure in pregnancy. Am J Obstet Gynecol 2000, 183:S1-S22.
  • [4]Cheifetz S, Bellón T, Calés C, Vera S, Bernabeu C, Massagué J, Letarte M: Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem 1992, 267:19027-19030.
  • [5]Gougos A, Letarte M: Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J Biol Chem 1990, 265:8361-8364.
  • [6]St-Jacques S, Forte M, Lye SJ, Letarte M: Localization of endoglin, a transforming growth factor-β binding protein, and of CD44 and integrins in placenta during the first trimester of pregnancy. Biol Reprod 1994, 51:405-413.
  • [7]Jerkic M, Rivas-Elena JV, Prieto M, Carrón R, Sanz-Rodriguez F, Pérez-Barriocanal F, Rodríguez-Barbero A, Bernabéu C, López-Novoa JM: Endoglin regulates nitric oxide-dependent vasodilatation. FASEB J 2004, 18:609-611.
  • [8]Toporsian M, Gros R, Kabir MG, Vera S, Govindaraju K, Eidelman DH, Husain M, Letarte M: A role for endoglin in coupling eNOS activity and regulating vascular tone revealed in hereditary hemorrhagic telangiectasia. Circ Res 2005, 96:684-692.
  • [9]Caniggia I, Taylor CV, Ritchie JW, Lye SJ, Letarte M: Endoglin regulates trophoblast differentiation along the invasive pathway in human placental villous explants. Endocrinology 1997, 138:4977-4988.
  • [10]Mano Y, Kotani T, Shibata K, Matsumura H, Tsuda H, Sumigama S, Yamamato E, Iwase A, Senga T, Kikkawa F: The loss of endoglin promotes the invasion of extravillous trophoblasts. Endocrinology 2011, 152:4386-4394.
  • [11]Roberts JM, Hubel CA: The two stage model of preeclampsia: variations on the theme. Placenta 2009, 23:S32-S37.
  • [12]Farina A, Sekizawa A, De Sanctis P, Purwosunu Y, Okai T, Cha DH, Kang JH, Vicenzi C, Tempesta A, Wibowo N, Valvassori L, Rizzo N: Gene expression in chorionic villous samples at 11 weeks’ gestation from women destined to develop preeclampsia. Prenat Diagn 2008, 28:956-961.
  • [13]Farina A, Zucchini C, Sekizawa A, Purwosunu Y, de Sanctis P, Santarsiero G, Rizzo N, Morano D, Okai T: Performance of messenger RNAs circulating in maternal blood in the prediction of preeclampsia at 10-14 weeks. Am J Obstet Gynecol 2010, 203:1.e1-1.e7.
  • [14]Purwosunu Y, Sekizawa A, Yoshimura S, Farina A, Wibowo N, Nakamura M, Shimizu H, Okai T: Expression of angiogenesis-related genes in the cellular component of the blood of preeclamptic women. Reproductive Sciences 2009, 16:857-864.
  • [15]Sekizawa A, Purwosunu Y, Farina A, Shimizu H, Nakamura M, Wibowo N, Rizzo N, Okai T: Prediction of pre-eclampsia by an analysis of placenta-derived cellular mRNA in the blood of pregnant women at 15-20 weeks of gestation. Br J Obstet Gynaecol 2010, 117:557-564.
  • [16]Sitras V, Paulssen RH, Gronaas H, Leirvik J, Hanssen TA, Vartun A, Acharya G: Differential placental gene expression in severe preeclampsia. Placenta 2009, 30:424-433.
  • [17]Tsai S, Hardison NE, James AH, Motsinger-Reif AA, Bischoff SR, Thames BH, Piedrahita JA: Transcriptional profiling of human placentas from pregnancies complicated by preeclampsia reveals disregulation of sialic acid acetylesterase and immune signaling pathways. Placenta 2011, 32:175-182.
  • [18]Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, Bdolah Y, Lim KH, Yuan HT, Libermann TA, Stillman IE, Roberts D, D’Amore PA, Epstein FH, Sellke FW, Romero R, Sukhatme VP, Karumanchi SA: Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 2006, 12:642-649.
  • [19]Kaitu’u-Lino T, Palmer KR, Whitehead CL, Williams E, Lappas M, Tong S: MMP-14 is expressed in preeclamptic placentas and mediates release of soluble endoglin. Am J Pathol 2012, 180:888-894.
  • [20]Rana S, Karumanchi SA, Levine RJ, Venkatesha S, Rauh-Hain JA, Tamez H, Thadhani R: Sequential changes in antiangiogenic factors in early pregnancy and risk developing preeclampsia. Hypertension 2007, 50:137-142.
  • [21]Lind T, Godfrey KA, Otun H, Philips PR: Changes in serum uric acid concentrations during normal pregnancy. Br J Obstet Gynaecol 1984, 91:128-132.
  • [22]Fujita PA, Rhead B, Zweig AS, Hinrichs AS, Karolchik D, Cline MS, Goldman M, Barber GP, Clawson H, Coelho A, Diekhans M, Dreszer TR, Giardine BM, Harte RA, Hillman-Jackson J, Hsu F, Kirkup V, Kuhn RM, Learned K, Li CH, Meyer LR, Pohl A, Raney BJ, Rosenbloom KR, Smith KE, Haussler D, Kent WJ: The UCSC genome browser database: update 2011. Nucleic Acids Res 2011, 39:D876-D882.
  • [23]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC: PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet 2007, 81:559-575.
  • [24]Botella LM, Sánchez-Elsner T, Rius C, Corbí A, Bernabéu C: Identification of a critical Sp1 site within the endoglin promoter and its involvement in the transforming growth factor-β stimulation. J Biol Chem 2001, 276:34486-34494.
  • [25]Guerrero-Esteo M, Sánchez-Elsner T, Letamendia A, Bernabéu C: Extracellular and cytoplasmic domains of endoglin interact with the transforming growth factor-beta receptors I and II. J Biol Chem 2002, 277:29197-29209.
  • [26]Bosler AD, Richards J, George C, Godmilow L, Ganguly A: Novel mutations in ENG and ACVRL1 identified in a series of 200 individuals undergoing clinical genetic testing for hereditary hemorrhagic telangiectasia (HHT): Correlation of genotype with phenotype. Hum Mut 2006, 27:667-675.
  • [27]Hawinkles L, Kuiper P, Wiercinska E, Verspaget HW, Liu Z, Pardali E, Sier CF, ten Dijke P: Matrix metalloproteinase-14 (MT1-MMP)-mediated endoglin shedding inhibits tumor angiogenesis. Cancer Res 2010, 70:4141-4150.
  • [28]Ríus C, Smith JD, Almendro N, Langa C, Botella LM, Marchuk DA, Vary CP, Bernabéu C: Cloning of the promoter region of human endoglin, the target gene for hereditary hemorrhagic telangiectasia type 1. Blood 1998, 92:4677-4690.
  • [29]Suthanthiran M, Li B, Song JO, Ding R, Sharma VK, Schwartz JE, August P: Transforming growth factor-β1 hyperexpression in African-American hypertensives: a novel mediator of hypertension and/or target organ damage. Proc Natl Acad Sci U S A 2000, 97:3479-3484.
  • [30]Srinivas SK, Morrison AC, Andrela CM, Elovitz MA: Allelic variations in angiogenic pathway genes are associated with preeclampsia. Am J Obstet Gynecol 2010, 202:445.e1-11.
  文献评价指标  
  下载次数:6次 浏览次数:2次