期刊论文详细信息
BMC Complementary and Alternative Medicine
Inhibitory effect of curcumin on testosterone induced benign prostatic hyperplasia rat model
Joo-Ho Chung1  Young Ock Kim4  Sang Hyub Lee2  Sang Yeol Song3  Jooil Yi3  Byung-Cheol Lee3  Sang Wook Kang1  Hye Sook Jeon1  Hae Jeong Park1  Hosik Seok1  Su Kang Kim1 
[1] Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea;Department of Urology, College of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea;Department of Internal Medicine, College of Oriental Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea;Development of Ginseng and Medical Plants Research Institute, Rural Administration, Eumseong 369-873, Republic of Korea
关键词: BPH;    Testosterone;    Benign prostatic hyperplasia;    Curcumin;   
Others  :  1233220
DOI  :  10.1186/s12906-015-0825-y
 received in 2013-11-15, accepted in 2015-08-25,  发布年份 2015
PDF
【 摘 要 】

Background

Benign prostatic hyperplasia (BPH) is one of the common male diseases, which is provoked by dihydrotestosterone (DHT) and androgen signals. Several studies showed that curcumin has various effects of prevention and treatment to diseases. We investigated whether curcumin may repress the development of BPH in male Wistar rats.

Methods

Seven weeks male Wistar rats were and divided into 4 groups (normal group, BPH group, finasteride group, curcumin group; n = 8 for each group). In order to induce BPH in rats, rats were castrated and testosterone was injected subcutaneously everyday (s.c., 20 mg/kg). Rats in the curcumin group were treated 50 mg/kg, administered orally for 4 weeks. After 4 weeks, all rats were sacrificed and their prostate and serum were analyzed.

Results

Compared to the finasteride group as positive group, the curcumin group showed similarly protective effect on BPH in histopathologic morphology, prostate volume. Results of immunohistochemistry and western-blot showed decreased expressions of VEGF, TGF-ß1, and IGF1 were also decreased in the curcumin group.

Conclusions

These results suggested that curcumin inhibited the development of BPH and might a useful herbal treatment or functional food for BPH.

【 授权许可】

   
2015 Kim et al.

【 预 览 】
附件列表
Files Size Format View
20151119060015167.pdf 2844KB PDF download
Fig. 3. 34KB Image download
Fig. 2. 106KB Image download
Fig. 1. 86KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

【 参考文献 】
  • [1]Lee YJ, Jeong SJ, Byun SS, Lee JJ, Han JW, Kim KW. Prevalence and correlates of nocturia in community-dwelling older men: results from the korean longitudinal study on health and aging. Korean J Urol. 2012; 53(4):263-7.
  • [2]Nandeesha H. Benign prostatic hyperplasia: dietary and metabolic risk factors. Int Urol Nephrol. 2008; 40(3):649-56.
  • [3]Zhu YS, Imperato-McGinley JL. 5alpha-reductase isozymes and androgen actions in the prostate. Ann N Y Acad Sci. 2009; 1155:43-56.
  • [4]Carson C, Rittmaster R. The role of dihydrotestosterone in benign prostatic hyperplasia. Urology. 2003; 61(4 Suppl 1):2-7.
  • [5]Uygur MC, Gur E, Arik AI, Altug U, Erol D. Erectile dysfunction following treatments of benign prostatic hyperplasia: a prospective study. Andrologia. 1998; 30(1):5-10.
  • [6]Patel AK, Chapple CR. Medical management of lower urinary tract symptoms in men: current treatment and future approaches. Nat Clin Pract Urol. 2008; 5(4):211-9.
  • [7]Aggarwal BB, Gupta SC, Sung B. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br J Pharmacol. 2013; 169(8):1672-92.
  • [8]Sahebkar A. A systematic review and meta-analysis of randomized controlled trials investigating the effects of curcumin on blood lipid levels. Clin Nutr. 2013; 33(3):406-14.
  • [9]Nguyen TA, Friedman AJ. Curcumin: a novel treatment for skin-related disorders. J Drugs Dermatol. 2013; 12(10):1131-7.
  • [10]Wang LL, Sun Y, Huang K, Zheng L. Curcumin, a potential therapeutic candidate for retinal diseases. Mol Nutr Food Res. 2013; 57(9):1557-68.
  • [11]Chiu S, Terpstra KJ, Bureau Y, Hou J, Raheb H, Cernvosky Z, et al. Liposomal-formulated curcumin [Lipocurc] targeting HDAC (Histone Deacetylase) prevents apoptosis and improves motor deficits in Park 7 (DJ-1)-knockout rat model of Parkinson’s disease: implications for epigenetics-based nanotechnologydriven drug platform. J Complement Integr Med. 2013;10(1):75-88.
  • [12]Trujillo J, Chirino YI, Molina-Jijon E, Anderica-Romero AC, Tapia E, Pedraza-Chaverri J. Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biol. 2013; 1(1):448-56.
  • [13]Yang Y, Duan W, Lin Y, Yi W, Liang Z, Yan J, Wang N, Deng C, Zhang S, Li Y et al.. SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury. Free Radic Biol Med. 2013; 65C:667-79.
  • [14]Okudan N, Belviranli M, Gokbel H, Oz M, Kumak A. Protective effects of curcumin supplementation on intestinal ischemia reperfusion injury. Phytomedicine. 2013; 20(10):844-8.
  • [15]Zhou JH, Hao ML, Zhao S, Chen HE, Chen D, Ying L, Sun Q, Wang WT. [Effects of curcumin on pneumocyte apoptosis and CHOP in pulmonary ischemia/reperfusion injury of mice]. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2013; 29(4):318-23.
  • [16]Zhou G-Z, Sun G-C, Zhang S-N. Curcumin derivative HBC induces autophagy through activating AMPK signal in A549 cancer cells. Molecular Cellular Toxicol. 2015; 11(1):29-34.
  • [17]Shi Q, Shih CC, Lee KH. Novel anti-prostate cancer curcumin analogues that enhance androgen receptor degradation activity. Anticancer Agents Med Chem. 2009; 9(8):904-12.
  • [18]Guo H, Xu YM, Ye ZQ, Yu JH, Hu XY. Curcumin induces cell cycle arrest and apoptosis of prostate cancer cells by regulating the expression of IkappaBalpha, c-Jun and androgen receptor. Pharmazie. 2013; 68(6):431-4.
  • [19]Shan B, Schaaf C, Schmidt A, Lucia K, Buchfelder M, Losa M, Kuhlen D, Kreutzer J, Perone MJ, Arzt E et al.. Curcumin suppresses HIF1A synthesis and VEGFA release in pituitary adenomas. J Endocrinol. 2012; 214(3):389-98.
  • [20]Bae MK, Kim SH, Jeong JW, Lee YM, Kim HS, Kim SR, Yun I, Bae SK, Kim KW. Curcumin inhibits hypoxia-induced angiogenesis via down-regulation of HIF-1. Oncol Rep. 2006; 15(6):1557-62.
  • [21]Kim HJ, Park JW, Cho YS, Cho CH, Kim JS, Shin HW, Chung DH, Kim SJ, Chun YS. Pathogenic role of HIF-1alpha in prostate hyperplasia in the presence of chronic inflammation. Biochim Biophys Acta. 2013; 1832(1):183-94.
  • [22]Lee HS, Lee MJ, Kim H, Choi SK, Kim JE, Moon HI, Park WH. Curcumin inhibits TNFalpha-induced lectin-like oxidised LDL receptor-1 (LOX-1) expression and suppresses the inflammatory response in human umbilical vein endothelial cells (HUVECs) by an antioxidant mechanism. J Enzyme Inhib Med Chem. 2010; 25(5):720-9.
  • [23]Ledda A, Belcaro G, Dugall M, Luzzi R, Scoccianti M, Togni S, Appendino G, Ciammaichella G. Meriva(R), a lecithinized curcumin delivery system, in the control of benign prostatic hyperplasia: a pilot, product evaluation registry study. Panminerva Med. 2012; 54(1 Suppl 4):17-22.
  • [24]Rick FG, Abi-Chaker A, Szalontay L, Perez R, Jaszberenyi M, Jayakumar AR, Shamaladevi N, Szepeshazi K, Vidaurre I, Halmos G et al.. Shrinkage of experimental benign prostatic hyperplasia and reduction of prostatic cell volume by a gastrin-releasing peptide antagonist. Proc Natl Acad Sci U S A. 2013; 110(7):2617-22.
  • [25]Corradi LS, Goes RM, Vilamaior PS, Taboga SR. Increased androgen receptor and remodeling in the prostatic stroma after the inhibition of 5-alpha reductase and aromatase in gerbil ventral prostate. Microsc Res Tech. 2009; 72(12):939-50.
  • [26]Lai KP, Huang CK, Fang LY, Izumi K, Lo CW, Wood R, Kindblom J, Yeh S, Chang C. Targeting stromal androgen receptor suppresses prolactin-driven benign prostatic hyperplasia (BPH). Mol Endocrinol. 2013; 27(10):1617-31.
  • [27]Bartsch G, Rittmaster RS, Klocker H. Dihydrotestosterone and the concept of 5alpha-reductase inhibition in human benign prostatic hyperplasia. Eur Urol. 2000; 37(4):367-80.
  • [28]Chen Y, Li T, Yu X, Li J, Luo D, Mo Z, Hu Y. The RTK/ERK pathway is associated with prostate cancer risk on the SNP level: A pooled analysis of 41 sets of data from case–control studies. Gene. 2013; 534(2):286-97.
  • [29]Soulitzis N, Karyotis I, Delakas D, Spandidos DA. Expression analysis of peptide growth factors VEGF, FGF2, TGFB1, EGF and IGF1 in prostate cancer and benign prostatic hyperplasia. Int J Oncol. 2006; 29(2):305-14.
  • [30]Fuzio P, Ditonno P, Rutigliano M, Battaglia M, Bettocchi C, Loverre A, Grandaliano G, Perlino E. Regulation of TGF-beta1 expression by androgen deprivation therapy of prostate cancer. Cancer Lett. 2012; 318(2):135-44.
  • [31]Rick FG, Schally AV, Block NL, Halmos G, Perez R, Fernandez JB, Vidaurre I, Szalontay L. LHRH antagonist Cetrorelix reduces prostate size and gene expression of proinflammatory cytokines and growth factors in a rat model of benign prostatic hyperplasia. Prostate. 2011; 71(7):736-47.
  • [32]Yu S, Xia S, Yang D, Wang K, Yeh S, Gao Z, Chang C. Androgen receptor in human prostate cancer-associated fibroblasts promotes prostate cancer epithelial cell growth and invasion. Med Oncol. 2013; 30(3):674.
  • [33]McLaren ID, Jerde TJ, Bushman W. Role of interleukins, IGF and stem cells in BPH. Differentiation. 2011; 82(4–5):237-43.
  • [34]Shao JC, Wang Y, Zhang SW, Luo DK, Chang DG, Wu XQ, Tang M, He ZM. [Angiogenesis and regulatory factors in rats with BPH induced by testosterone]. Zhonghua Nan Ke Xue. 2005; 11(6):413-8.
  • [35]Niwa S, Ohya S, Kojima Y, Sasaki S, Yamamura H, Sakuragi M, Kohri K, Imaizumi Y. Down-regulation of the large-conductance Ca(2+)-activated K+ channel, K(Ca)1.1 in the prostatic stromal cells of benign prostate hyperplasia. Biol Pharm Bull. 2012; 35(5):737-44.
  • [36]Cross NA, Reid SV, Harvey AJ, Jokonya N, Eaton CL. Opposing actions of TGFbeta1 and FGF2 on growth, differentiation and extracellular matrix accumulation in prostatic stromal cells. Growth Factors. 2006; 24(4):233-41.
  • [37]Descazeaud A, Weinbreck N, Robert G, Vacherot F, Abbou CC, Labrousse F, Allory Y, Rubin MA, de la Taille A. Transforming growth factor beta-receptor II protein expression in benign prostatic hyperplasia is associated with prostate volume and inflammation. BJU Int. 2011; 108(2 Pt 2):E23-8.
  • [38]Kleinberg DL, Ruan W, Yee D, Kovacs KT, Vidal S. Insulin-like growth factor (IGF)-I controls prostate fibromuscular development: IGF-I inhibition prevents both fibromuscular and glandular development in eugonadal mice. Endocrinology. 2007; 148(3):1080-8.
  • [39]Youreva V, Kapakos G, Srivastava AK. Insulin-like growth-factor-1-induced PKB signaling and Egr-1 expression is inhibited by curcumin in A-10 vascular smooth muscle cells. Can J Physiol Pharmacol. 2013; 91(3):241-7.
  • [40]Kapakos G, Youreva V, Srivastava AK. Attenuation of endothelin-1-induced PKB and ERK1/2 signaling, as well as Egr-1 expression, by curcumin in A-10 vascular smooth muscle cells. Can J Physiol Pharmacol. 2012; 90(9):1277-85.
  • [41]Shehzad A, Lee J, Lee YS. Curcumin in various cancers. Biofactors. 2013; 39(1):56-68.
  • [42]Xie P, Zhang W, Yuan S, Chen Z, Yang Q, Yuan D, Wang F, Liu Q. Suppression of experimental choroidal neovascularization by curcumin in mice. PLoS One. 2012; 7(12):e53329.
  • [43]Cho YJ, Yi CO, Jeon BT, Jeong YY, Kang GM, Lee JE, Roh GS, Lee JD. Curcumin attenuates radiation-induced inflammation and fibrosis in rat lungs. Korean J Physiol Pharmacol. 2013; 17(4):267-74.
  • [44]Kim G, Jang MS, Son YM, Seo MJ, Ji SY, Han SH, Jung ID, Park YM, Jung HJ, Yun CH. Curcumin inhibits CD4(+) T cell activation, but augments CD69 expression and TGF-beta1-mediated generation of regulatory T cells at late phase. PLoS One. 2013; 8(4):e62300.
  • [45]Jacob A, Chaves L, Eadon MT, Chang A, Quigg RJ, Alexander JJ. Curcumin alleviates immune-complex-mediated glomerulonephritis in factor-H-deficient mice. Immunology. 2013; 139(3):328-37.
  • [46]Shehzad A, Rehman G, Lee YS. Curcumin in inflammatory diseases. Biofactors. 2013; 39(1):69-77.
  文献评价指标  
  下载次数:2次 浏览次数:8次