期刊论文详细信息
Biotechnology for Biofuels
A time course analysis of the extracellular proteome of Aspergillus nidulans growing on sorghum stover
Andrew J Mort2  Rolf Prade1  Steven D Hartson2  Patricia Ayoubi-Canaan2  Anamika Ray2  Sayali Saykhedkar2 
[1]Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
[2]Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
关键词: Proteome;    Enzymatic hydrolysis;    Sorghum;    A. nidulans;    Lignocellulosic biocoversion;    Biofuels;    Cellulose;   
Others  :  798257
DOI  :  10.1186/1754-6834-5-52
 received in 2012-04-20, accepted in 2012-07-26,  发布年份 2012
PDF
【 摘 要 】

Background

Fungi are important players in the turnover of plant biomass because they produce a broad range of degradative enzymes. Aspergillus nidulans, a well-studied saprophyte and close homologue to industrially important species such as A. niger and A. oryzae, was selected for this study.

Results

A. nidulans was grown on sorghum stover under solid-state culture conditions for 1, 2, 3, 5, 7 and 14 days. Based on analysis of chitin content, A. nidulans grew to be 4-5% of the total biomass in the culture after 2 days and then maintained a steady state of 4% of the total biomass for the next 12 days. A hyphal mat developed on the surface of the sorghum by day one and as seen by scanning electron microscopy the hyphae enmeshed the sorghum particles by day 5. After 14 days hyphae had penetrated the entire sorghum slurry. Analysis (1-D PAGE LC-MS/MS) of the secretome of A. nidulans, and analysis of the breakdown products from the sorghum stover showed a wide range of enzymes secreted. A total of 294 extracellular proteins were identified with hemicellulases, cellulases, polygalacturonases, chitinases, esterases and lipases predominating the secretome. Time course analysis revealed a total of 196, 166, 172 and 182 proteins on day 1, 3, 7 and 14 respectively. The fungus used 20% of the xylan and cellulose by day 7 and 30% by day 14. Cellobiose dehydrogenase, feruloyl esterases, and CAZy family 61 endoglucanases, all of which are thought to reduce the recalcitrance of biomass to hydrolysis, were found in high abundance.

Conclusions

Our results show that A. nidulans secretes a wide array of enzymes to degrade the major polysaccharides and lipids (but probably not lignin) by 1 day of growth on sorghum. The data suggests simultaneous breakdown of hemicellulose, cellulose and pectin. Despite secretion of most of the enzymes on day 1, changes in the relative abundances of enzymes over the time course indicates that the set of enzymes secreted is tailored to the specific substrates available. Our findings reveal that A. nidulans is capable of degrading the major polysaccharides in sorghum without any chemical pre-treatment.

【 授权许可】

   
2012 Saykhedkar et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706113042494.pdf 1103KB PDF download
Figure 5. 54KB Image download
Figure 4. 39KB Image download
Figure 3. 24KB Image download
Figure 2. 15KB Image download
Figure 1. 115KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Carmen S: Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol Adv 2009, 27(2):185-194.
  • [2]Powell J, Hons F, McBee G: Nutrient and carbohydrate partitioning in sorghum stover. Agron J 1991, 83:933-937.
  • [3]Sierra R, Smith A, Cesar H, Mark T: Producing Fuels and Chemicals from Lignocellulosic. Chem Eng Prog 2008, 104(8):S10-S18.
  • [4]Lloyd TA, Wyman CE: Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 2005, 96(18):1967-1977.
  • [5]Teymouri F, Laureano-Pérez L, Alizadeh H, Dale B: Ammonia fiber explosion treatment of corn stover. Appl Biochem Biotechnol 2004, 115(1):951-963.
  • [6]Kim S, Holtzapple MT: Effect of structural features on enzyme digestibility of corn stover. Bioresour Technol 2006, 97(4):583-591.
  • [7]Liu L, Sun J, Li M, Wang S, Pei H, Zhang J: Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment. Bioresour Technol 2009, 100(23):5853-5858.
  • [8]Shi J, Chinn MS, Sharma-Shivappa RR: Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresour Technol 2008, 99(14):6556-6564.
  • [9]Zheng R, Zhang H, Zhao J, Lei M, Huang H: Direct and simultaneous determination of representative byproducts in a lignocellulosic hydrolysate of corn stover via gas chromatography–mass spectrometry with a Deans switch. J Chromatogr A 2011, 5(31):5319-5327.
  • [10]Szakacs G, Tengerdy RP: Production of cellulase and xylanase with selected filamentous fungi by solid substrate fermentation. In Enzymes for Pulp and Paper Processing. American Chemical Society, ; 1996:175-182.
  • [11]Schneider T, Gerrits B, Gassmann R, Schmid E, Gessner MO, Richter A, Battin T, Eberl L, Riedel K: Proteome analysis of fungal and bacterial involvement in leaf litter decomposition. Proteomics 2010, 10(9):1819-1830.
  • [12]Han M-J, Kim N-J, Lee S, Chang H: Extracellular proteome of Aspergillus terreus grown on different carbon sources. Curr Genet 2010, 56(4):369-382.
  • [13]Aspergillus nidulans Project Information. [http://www.broadinstitute.org/annotation/fungi/aspergillus_nidulans_old/background.html webcite]
  • [14]Galagan JE, Calvo SE, Cuomo C, Ma L-J, Wortman JR, Batzoglou S, Lee S-I, Basturkmen M, Spevak CC, Clutterbuck J, et al.: Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatusand A. oryzae. Nature 2005, 438(7071):1105-1115.
  • [15]Wortman JR, Gilsenan JM, Joardar V, Deegan J, Clutterbuck J, Andersen MR, Archer D, Bencina M, Braus G, Coutinho P, et al.: The 2008 update of the Aspergillus nidulans genome annotation: A community effort. Fungal Genetics and Biology 2009, 46(1, Supplement):S2-S13.
  • [16]Bauer S, Vasu P, Persson S, Mort AJ, Somerville CR: Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls. Proc Natl Acad Sci 2006, 103(30):11417-11422.
  • [17]Coutinho PM, Andersen MR, Kolenova K, VanKuyk PA, Benoit I, Gruben BS, Trejo-Aguilar B, Visser H, Solingen P, Pakula T, et al.: Post-genomic insights into the plant polysaccharide degradation potential of Aspergillus nidulans and comparison to Aspergillus niger and Aspergillus oryzae. Fungal Genetics and Biology 2009, 46(Supplement 1):S161-S169.
  • [18]Medina ML, Haynes PA, Breci L, Francisco WA: Analysis of secreted proteins from Aspergillus flavus. Proteomics 2005, 5(12):3153-3161.
  • [19]Oda K, Kakizono D, Yamada O, Iefuji H, Akita O, Iwashita K: Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions. Appl Environ Microbiol 2006, 72(5):3448-3457.
  • [20]Adav SS, Li AA, Manavalan A, Punt P, Sze SK: Quantitative iTRAQ Secretome Analysis of Aspergillus niger Reveals Novel Hydrolytic Enzymes. Journal of Proteome Research 2010, 9(8):3932-3940.
  • [21]Suraini Abd-Aziz GSH, Mohd Ali H, Mohamed Ismail Abdul K, Noraini S: Indirect method for quantification of cell biomass during solid-state fermentation of palm kernel cake based on protein content. Asian Journal of Scientific Research 2008, 1(4385–393):385-393.
  • [22]Zhou JY, Schepmoes AA, Zhang X, Moore RJ, Monroe ME, Lee JH, Camp DG, Smith RD, Qian WJ: Improved LC-MS/MS spectral counting statistics by recovering low-scoring spectra matched to confidently identified peptide sequences. J Proteome Res 2010, 9(11):5698-5704.
  • [23]Pedant Database. http://pedant.gsf.de webcite
  • [24]Walter MC, Rattei T, Arnold R, Guldener U, Munsterkotter M, Nenova K, Kastenmuller G, Tischler P, Wolling A, Volz A, et al.: PEDANT covers all complete RefSeq genomes. Nucleic Acids Res 2009, 37(Database issue):21.
  • [25]Aspergillus genome database. http://www.aspergillusgenome.org webcite
  • [26]Biely P: Microbial xylanolytic systems. Trends Biotechnol 1985, 3(11):286-290.
  • [27]Coughlan MP, Hazlewood GP: beta-1,4-D-xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol Appl Biochem 1993, 17(Pt 3):259-289.
  • [28]Javier PFI, Óscar G, Sanz-Aparicio J, Díaz P: Xylanases: Molecular properties and applications industrial enzymes. In In. Edited by Polaina J, MacCabe AP. Springer Netherlands, ; 2007:65-82.
  • [29]de Vries RP, Visser J: Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 2001, 65(4):497-522.
  • [30]Saeman JF, Bubl JL, Harris EE: Quantitative saccharification of wood and cellulose. Ind Eng Chem Anal Ed 1945, 17(1):35-37.
  • [31]de Vries RP, van Grieken C, vanKuyk PA, Wösten HAB: The value of genome sequences in the rapid Identification of novel genes encoding specific plant cell wall degrading enzymes. Current Genomics 2005, 6(3):157-187.
  • [32]Goyal A, Ghosh B, Eveleigh D: Characteristics of fungal cellulases. Bioresour Technol 1991, 36(1):37-50.
  • [33]Rabinovich ML, Bolobova AV, Vasil’chenko LG: Fungal decomposition of natural aromatic structures and xenobiotics: A Review. Appl Biochem Microbiol 2004, 40(1):1-17.
  • [34]Rabinovich ML, Melnick MS, Bolobova AV: The structure and mechanism of action of cellulolytic enzymes. Biochem Mosc 2002, 67(8):850-871.
  • [35]Lynd LR, Cushman JH, NICHOLS RJ, WYMAN CE: Fuel ethanol from cellulosic biomass. Science 1991, 251(4999):1318-1323.
  • [36]Bagga PS, Sandhu DK, Sharma S: Purification and characterization of cellulolytic enzymes produced by Aspergillus nidulans. J Appl Microbiol 1990, 68(1):61-68.
  • [37]Martens-Uzunova ES, Schaap PJ: Assessment of the pectin degrading enzyme network of Aspergillus niger by functional genomics. Fungal Genetics and Biology 2009, 46(1, Supplement):S170-S179.
  • [38]van den Brink J, de Vries RP: Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 2011, 91(6):1477-1492.
  • [39]Emri T, Molnár Z, Szilágyi M, Pócsi I: Regulation of autolysis in Aspergillus nidulans. Appl Biochem Biotechnol 2008, 151(2):211-220.
  • [40]Jaques AK, Fukamizo T, Hall D, Barton RC, Escott GM, Parkinson T, Hitchcock CA, Adams DJ: Disruption of the gene encoding the ChiB1 chitinase of Aspergillus fumigatus and characterization of a recombinant gene product. Microbiology 2003, 149(10):2931-2939.
  • [41]Yamazaki H, Yamazaki D, Takaya N, Takagi M, Ohta A, Horiuchi H: A chitinase gene, chiB, involved in the autolytic process of Aspergillus nidulans. Curr Genet 2007, 51(2):89-98.
  • [42]Shin KS, Kwon NJ, Kim YH, Park HS, Kwon GS, Yu JH: Differential roles of the ChiB chitinase in autolysis and cell death of Aspergillus nidulans. Eukaryot Cell 2009, 8(5):738-746.
  • [43]Kawasaki L, Wysong D, Diamond R, Aguirre J: Two divergent catalase genes are differentially regulated during Aspergillus nidulans development and oxidative stress. J Bacteriol 1997, 179(10):3284-3292.
  • [44]de Groot PWJ, Brandt BW, Horiuchi H, Ram AFJ, de Koster CG, Klis FM: Comprehensive genomic analysis of cell wall genes in Aspergillus nidulans. Fungal Genetics and Biology 2009, 46(1, Supplement):S72-S81.
  • [45]Harris SD: Branching of fungal hyphae: regulation, mechanisms and comparison with other branching systems. Mycologia 2008, 100(6):823-832.
  • [46]Karr AL, Albersheim P: Polysaccharide-degrading enzymes are unable to attack plant cell walls without Prior Action by a “Wall-modifying Enzyme”. Plant Physiol 1970, 46(1):69-80.
  • [47]Hatfield RD, Ralph J, Grabber JH: Cell wall cross-linking by ferulates and diferulates in grasses. J Sci Food Agric 1999, 79(3):403-407.
  • [48]Koseki T, Hori A, Seki S, Murayama T, Shiono Y: Characterization of two distinct feruloyl esterases, AoFaeB and AoFaeC, from Aspergillus oryzae. Appl Microbiol Biotechnol 2009, 83(4):689-696.
  • [49]Koseki T, Fushinobu S, Ardiansyah A, Shirakawa H, Komai M: Occurrence, properties, and applications of feruloyl esterases. Appl Microbiol Biotechnol 2009, 84(5):803-810.
  • [50]Benoit I, Danchin E, Bleichrodt R-J, de Vries R: Biotechnological applications and potential of fungal feruloyl esterases based on prevalence, classification and biochemical diversity. Biotechnol Lett 2008, 30(3):387-396.
  • [51]Henriksson G, Johansson G, Pettersson G: A critical review of cellobiose dehydrogenases. J Biotechnol 2000, 78(2):93-113.
  • [52]Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen J-C, Brown K, Salbo R, Ding H, Vlasenko E, Merino S, et al.: Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: Structure and function of a large, enigmatic family. Biochemistry 2010, 49(15):3305-3316.
  • [53]Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen J-CN, Johansen KS, Krogh KBRM, Jørgensen CI, Tovborg M, Anthonsen A, et al.: Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci 2011, 108(37):15079-15084.
  • [54]Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD: Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 2011, 77(19):7007-7015.
  • [55]Couturier M, Navarro D, Olive C, Chevret D, Haon M, Favel A, Lesage-Meessen L, Henrissat B, Coutinho P, Berrin J-G: Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis. BMC Genomics 2012, 13(1):57. BioMed Central Full Text
  • [56]Fungal Genetics Stock Center. http://www.fgsc.net/ webcite
  • [57]Penman D, Britton G, Hardwick K, Collin HA, Isaac S: Chitin as a measure of biomass of Crinipellis perniciosa, causal agent of witches’ broom disease of Theobroma cacao. Mycol Res 2000, 104(6):671-675.
  • [58]Blakeney AB, Harris PJ, Henry RJ, Stone BA: A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr Res 1983, 113(2):291-299.
  • [59]Mort AJ, Parker S, Kuo MS: Recovery of methylated saccharides from methylation reaction mixtures using Sep-Pak C18 cartridges. Anal Biochem 1983, 133(2):380-384.
  • [60]Naran R, Pierce ML, Mort AJ: Detection and identification of rhamnogalacturonan lyase activity in intercellular spaces of expanding cotton cotyledons. The Plant Journal 2007, 50(1):95-107.
  • [61]Sumner JB, Graham Wtao VA: Dinitrosalicylic acid: a reagent for the estimation of sugar in normal and diabetic urine. J Biol Chem 1921, 47(1):5-9.
  • [62]Miller GL: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 1959, 31(3):426-428.
  • [63]Squina FM, Mort AJ, Decker SR, Prade RA: Xylan decomposition by Aspergillus clavatus endo-xylanase. Protein Expr Purif 2009, 68(1):65-71.
  • [64]Martin FC: A rapid and sensitive method for the analysis of carbohydrate components in glycoproteins using gas–liquid chromatography. Anal Biochem 1982, 123(2):336-341.
  • [65]Komalavilas P, Mort AJ: The acetylation of O-3 of galacturonic acid in the rhamnose-rich portion of pectins. Carbohydr Res 1989, 189:261-272.
  • [66]Sorghum Genome Database. http://www.phytozome.net/sorghum webcite
  • [67]Keller A, Nesvizhskii AI, Kolker E, Aebersold R: Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 2002, 74(20):5383-5392.
  • [68]Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG: Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Molecular & Cellular Proteomics 2005, 4(10):1487-1502.
  • [69]SignalP software. http://www.cbs.dtu.dk/services/SignalP/ webcite
  • [70]Bendtsen JD, Nielsen H, von Heijne G, Brunak S: Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004, 340(4):783-795.
  文献评价指标  
  下载次数:57次 浏览次数:43次