期刊论文详细信息
Biology Direct
Modeling of interaction between cytochrome c and the WD domains of Apaf-1: bifurcated salt bridges underlying apoptosome assembly
Daria N. Shalaeva3  Daria V. Dibrova1  Michael Y. Galperin2  Armen Y. Mulkidjanian1 
[1] A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 117999, Russia
[2] National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, 20894, MD, USA
[3] School of Bioengineering and Bioinformatics, Moscow, 117999, Russia
关键词: Evolution;    Sequence analysis;    Molecular dynamics simulations;    Caspase;    Protein-protein interactions;    Apoptosis;    Salt bridge;    Hydrogen bond;    WD40 domains;    Apoptosis;   
Others  :  1206328
DOI  :  10.1186/s13062-015-0059-4
 received in 2014-12-26, accepted in 2015-05-13,  发布年份 2015
PDF
【 摘 要 】

Background

Binding of cytochrome c, released from the damaged mitochondria, to the apoptotic protease activating factor 1 (Apaf-1) is a key event in the apoptotic signaling cascade. The binding triggers a major domain rearrangement in Apaf-1, which leads to oligomerization of Apaf-1/cytochrome c complexes into an apoptosome. Despite the availability of crystal structures of cytochrome c and Apaf-1 and cryo-electron microscopy models of the entire apoptosome, the binding mode of cytochrome c to Apaf-1, as well as the nature of the amino acid residues of Apaf-1 involved remain obscure.

Results

We investigated the interaction between cytochrome c and Apaf-1 by combining several modeling approaches. We have applied protein-protein docking and energy minimization, evaluated the resulting models of the Apaf-1/cytochrome c complex, and carried out a further analysis by means of molecular dynamics simulations. We ended up with a single model structure where all the lysine residues of cytochrome c that are known as functionally-relevant were involved in forming salt bridges with acidic residues of Apaf-1. This model has revealed three distinctive bifurcated salt bridges, each involving a single lysine residue of cytochrome c and two neighboring acidic resides of Apaf-1. Salt bridge-forming amino acids of Apaf-1 showed a clear evolutionary pattern within Metazoa, with pairs of acidic residues of Apaf-1, involved in bifurcated salt bridges, reaching their highest numbers in the sequences of vertebrates, in which the cytochrome c-mediated mechanism of apoptosome formation seems to be typical.

Conclusions

The reported model of an Apaf-1/cytochrome c complex provides insights in the nature of protein-protein interactions which are hard to observe in crystallographic or electron microscopy studies. Bifurcated salt bridges can be expected to be stronger than simple salt bridges, and their formation might promote the conformational change of Apaf-1, leading to the formation of an apoptosome. Combination of structural and sequence analyses provides hints on the evolution of the cytochrome c-mediated apoptosis.

Reviewers

This article was reviewed by Andrei L. Osterman, Narayanaswamy Srinivasan, Igor N. Berezovsky, and Gerrit Vriend (nominated by Martijn Huynen).

【 授权许可】

   
2015 Shalaeva et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150528013257672.pdf 2790KB PDF download
Fig. 10. 123KB Image download
Fig. 9. 83KB Image download
Fig. 8. 59KB Image download
Fig. 7. 108KB Image download
Fig. 6. 61KB Image download
Fig. 5. 135KB Image download
Fig. 4. 107KB Image download
Fig. 3. 82KB Image download
Fig. 2. 75KB Image download
Fig. 1. 106KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

【 参考文献 】
  • [1]Green DR, Reed JC: Mitochondria and apoptosis. Science 1998, 281(5381):1309-1312.
  • [2]Kroemer G, Galluzzi L, Brenner C: Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007, 87(1):99-163.
  • [3]Orrenius S, Gogvadze V, Zhivotovsky B: Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 2007, 47:143-183.
  • [4]Cloonan SM, Choi AM: Mitochondria: sensors and mediators of innate immune receptor signaling. Curr Opin Microbiol 2013, 16(3):327-338.
  • [5]Osiewacz HD, Bernhardt D: Mitochondrial quality control: impact on aging and life span - a mini-review. Gerontology 2013, 59(5):413-420.
  • [6]Kushnareva Y, Andreyev AY, Kuwana T, Newmeyer DD: Bax activation initiates the assembly of a multimeric catalyst that facilitates Bax pore formation in mitochondrial outer membranes. PLoS Biol 2012, 10(9):e1001394.
  • [7]Shimizu S, Narita M, Tsujimoto Y: Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 1999, 399(6735):483-487.
  • [8]Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, et al.: Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001, 292(5517):727-730.
  • [9]Liu X, Kim CN, Yang J, Jemmerson R, Wang X: Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996, 86(1):147-157.
  • [10]Wang CX, Youle RJ: The role of mitochondria in apoptosis. Annu Rev Genet 2009, 43:95-118.
  • [11]Oberst A, Bender C, Green DR: Living with death: the evolution of the mitochondrial pathway of apoptosis in animals. Cell Death Differ 2008, 15(7):1139-1146.
  • [12]Bender CE, Fitzgerald P, Tait SWG, Llambi F, McStay GP, Tupper DO, et al.: Mitochondrial pathway of apoptosis is ancestral in metazoans. Proc Natl Acad Sci U S A 2012, 109(13):4904-4909.
  • [13]Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S: Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci U S A 2002, 99(3):1259-1263.
  • [14]Moore GR, Pettigrew GW: Cytochromes c. evolutionary, structural and physicochemical aspects. Springer, Berlin Heidelberg; 1990.
  • [15]Skulachev VP: Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett 1998, 423(3):275-280.
  • [16]Kulikov AV, Shilov ES, Mufazalov IA, Gogvadze V, Nedospasov SA, Zhivotovsky B: Cytochrome c: the Achilles’ heel in apoptosis. Cell Mol Life Sci 2012, 69(11):1787-1797.
  • [17]Stirnimann CU, Petsalaki E, Russell RB, Muller CW: WD40 proteins propel cellular networks. Trends Biochem Sci 2010, 35(10):565-574.
  • [18]Wang Y, Hu XJ, Zou XD, Wu XH, Ye ZQ, Wu YD: WDSPdb: a database for WD40-repeat proteins. Nucleic Acids Res 2015, 43(Database issue):D339-D444.
  • [19]Xu C, Min J: Structure and function of WD40 domain proteins. Protein Cell 2011, 2(3):202-214.
  • [20]Wu XH, Chen RC, Gao Y, Wu YD: The effect of Asp-His-Ser/Thr-Trp tetrad on the thermostability of WD40-repeat proteins. Biochemistry 2010, 49(47):10237-10245.
  • [21]Paoli M: Protein folds propelled by diversity. Prog Biophys Mol Biol 2001, 76(1–2):103-130.
  • [22]Kopec KO, Lupas AN: beta-Propeller blades as ancestral peptides in protein evolution. PLoS One 2013, 8(10):e77074.
  • [23]Chaudhuri I, Soding J, Lupas AN: Evolution of the beta-propeller fold. Proteins 2008, 71(2):795-803.
  • [24]Yuan S, Yu X, Topf M, Ludtke SJ, Wang X, Akey CW: Structure of an apoptosome-procaspase-9 CARD complex. Structure 2010, 18(5):571-583.
  • [25]Yuan SJ, Topf M, Reubold TF, Eschenburg S, Akey CW: Changes in Apaf-1 conformation that drive apoptosome assembly. Biochemistry 2013, 52(13):2319-2327.
  • [26]Reubold TF, Wohlgemuth S, Eschenburg S: Crystal structure of full-length Apaf-1: how the death signal is relayed in the mitochondrial pathway of apoptosis. Structure 2011, 19(8):1074-1083.
  • [27]Yu XC, Acehan D, Menetret JF, Booth CR, Ludtke SJ, Riedl SJ, et al.: A structure of the human apoptosome at 12.8 Å resolution provides insights into this cell death platform. Structure 2005, 13(11):1725-1735.
  • [28]Rodriguez J, Lazebnik Y: Caspase-9 and APAF-1 form an active holoenzyme. Gene Dev 1999, 13(24):3179-3184.
  • [29]Yu T, Wang X, Purring-Koch C, Wei Y, McLendon GL: A mutational epitope for cytochrome C binding to the apoptosis protease activation factor-1. J Biol Chem 2001, 276(16):13034-13038.
  • [30]Abdullaev ZK, Bodrova ME, Chernyak BV, Dolgikh DA, Kluck RM, Perverzev MO, et al.: A cytochrome c mutant with high electron transfer and antioxidant activities but devoid of apoptogenic effect. Biochem J 2002, 362:749-754.
  • [31]Olteanu A, Patel CN, Dedmon MM, Kennedy S, Linhoff MW, Minder CM, et al.: Stability and apoptotic activity of recombinant human cytochrome c. Biochem Biophys Res Commun 2003, 312(3):733-740.
  • [32]Sharonov GV, Feofanov AV, Bocharova OV, Astapova MV, Dedukhova VI, Chernyak BV, et al.: Comparative analysis of proapoptotic activity of cytochrome c mutants in living cells. Apoptosis 2005, 10(4):797-808.
  • [33]Hao Z, Duncan GS, Chang CC, Elia A, Fang M, Wakeham A, et al.: Specific ablation of the apoptotic functions of cytochrome C reveals a differential requirement for cytochrome C and Apaf-1 in apoptosis. Cell 2005, 121(4):579-591.
  • [34]Chandra D, Bratton SB, Person MD, Tian Y, Martin AG, Ayres M, et al.: Intracellular nucleotides act as critical prosurvival factors by binding to cytochrome C and inhibiting apoptosome. Cell 2006, 125(7):1333-1346.
  • [35]Chertkova RV, Sharonov GV, Feofanov AV, Bocharova OV, Latypov RF, Chernyak BV, et al.: Proapoptotic activity of cytochrome c in living cells: effect of K72 substitutions and species differences. Mol Cell Biochem 2008, 314(1–2):85-93.
  • [36]Kluck RM, Ellerby LM, Ellerby HM, Naiem S, Yaffe MP, Margoliash E, et al.: Determinants of cytochrome c pro-apoptotic activity - the role of lysine 72 trimethylation. J Biol Chem 2000, 275(21):16127-16133.
  • [37]Abdelwahid E, Yokokura T, Krieser RJ, Balasundaram S, Fowle WH, White K: Mitochondrial disruption in Drosophila apoptosis. Dev Cell 2007, 12(5):793-806.
  • [38]Liu K-Y, Yang H, Peng J-X, Hong H-Z: Cytochrome c and insect cell apoptosis. Insect Science 2012, 19(1):30-40.
  • [39]Pang Y, Bai XC, Yan C, Hao Q, Chen Z, Wang JW, et al.: Structure of the apoptosome: mechanistic insights into activation of an initiator caspase from Drosophila. Genes Dev 2015, 29(3):277-287.
  • [40]Riedl SJ, Li WY, Chao Y, Schwarzenbacher R, Shi YG: Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature 2005, 434(7035):926-933.
  • [41]Mirkin N, Jaconcic J, Stojanoff V, Moreno A: High resolution X-ray crystallographic structure of bovine heart cytochrome c and its application to the design of an electron transfer biosensor. Proteins 2008, 70(1):83-92.
  • [42]Kokhan O, Wraight CA, Tajkhorshid E: The binding interface of cytochrome c and cytochrome c1 in the bc1 complex: rationalizing the role of key residues. Biophys J 2010, 99(8):2647-2656.
  • [43]Lange C, Hunte C: Crystal structure of the yeast cytochrome bc1 complex with its bound substrate cytochrome c. Proc Natl Acad Sci U S A 2002, 99(5):2800-2805.
  • [44]Solmaz SR, Hunte C: Structure of complex III with bound cytochrome c in reduced state and definition of a minimal core interface for electron transfer. J Biol Chem 2008, 283(25):17542-17549.
  • [45]Stickle DF, Presta LG, Dill KA, Rose GD: Hydrogen bonding in globular proteins. J Mol Biol 1992, 226(4):1143-1159.
  • [46]Rogers MT, Helmholz L: The crystal structure of iodic acid. J Am Chem Soc 1941, 63:278-284.
  • [47]Albrecht G, Corey RB: The crystal structure of glycine. J Am Chem Soc 1939, 61(5):1087-1103.
  • [48]Steiner T: The hydrogen bond in the solid state. Angew Chem Int Ed Engl 2002, 41(1):49-76.
  • [49]de Groot BL, van Aalten DM, Scheek RM, Amadei A, Vriend G, Berendsen HJ: Prediction of protein conformational freedom from distance constraints. Proteins 1997, 29(2):240-251.
  • [50]Kumar S, Nussinov R: Close-range electrostatic interactions in proteins. Chembiochem 2002, 3(7):604-617.
  • [51]Kumar S, Nussinov R: Relationship between ion pair geometries and electrostatic strengths in proteins. Biophys J 2002, 83(3):1595-1612.
  • [52]Donald JE, Kulp DW, DeGrado WF: Salt bridges: geometrically specific, designable interactions. Proteins 2011, 79(3):898-915.
  • [53]Gvritishvili AG, Gribenko AV, Makhatadze GI: Cooperativity of complex salt bridges. Protein Sci 2008, 17(7):1285-1290.
  • [54]Barlow DJ, Thornton JM: Ion-pairs in proteins. J Mol Biol 1983, 168(4):867-885.
  • [55]Lee KK, Fitch CA, Garcia-Moreno B: Distance dependence and salt sensitivity of pairwise, coulombic interactions in a protein. Protein Sci 2002, 11(5):1004-1016.
  • [56]Kumar S, Ma B, Tsai CJ, Nussinov R: Electrostatic strengths of salt bridges in thermophilic and mesophilic glutamate dehydrogenase monomers. Proteins 2000, 38(4):368-383.
  • [57]Musafia B, Buchner V, Arad D: Complex salt bridges in proteins: statistical analysis of structure and function. J Mol Biol 1995, 254(4):761-770.
  • [58]Berezovskii IN, Esipova NG, Tumanian VG: The distribution of direct interactions in the spatial structures of globular proteins. Biofizika 1998, 43(3):392-402.
  • [59]Fain AV, Berezovskii IN, Chekhov VO, Ukrainskii DL, Esipova NG: Double and bifurcated hydrogen bonds in alpha-helices of globular proteins. Biofizika 2001, 46(6):969-977.
  • [60]Shi Z, Olson CA, Bell AJ Jr, Kallenbach NR: Stabilization of alpha-helix structure by polar side-chain interactions: complex salt bridges, cation-pi interactions, and C-H–leader O H-bonds. Biopolymers 2001, 60(5):366-380.
  • [61]Loladze VV, Makhatadze GI: Energetics of charge-charge interactions between residues adjacent in sequence. Proteins 2011, 79(12):3494-3499.
  • [62]Horovitz A, Serrano L, Avron B, Bycroft M, Fersht AR: Strength and co-operativity of contributions of surface salt bridges to protein stability. J Mol Biol 1990, 216(4):1031-1044.
  • [63]Mayne L, Englander SW, Qiu R, Yang JX, Gong YX, Spek EJ, et al.: Stabilizing effect of a multiple salt bridge in a prenucleated peptide. J Am Chem Soc 1998, 120(41):10643-10645.
  • [64]Iqbalsyah TM, Doig AJ: Anticooperativity in a Glu-Lys-Glu salt bridge triplet in an isolated alpha-helical peptide. Biochemistry 2005, 44(31):10449-10456.
  • [65]Pelletier H, Kraut J: Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c. Science 1992, 258(5089):1748-1755.
  • [66]Axelrod HL, Abresch EC, Okamura MY, Yeh AP, Rees DC, Feher G: X-ray structure determination of the cytochrome c2: reaction center electron transfer complex from Rhodobacter sphaeroides. J Mol Biol 2002, 319(2):501-515.
  • [67]Roberts VA, Pique ME: Definition of the interaction domain for cytochrome c on cytochrome c oxidase - III. Prediction of the docked complex by a complete, systematic search. J Biol Chem 1999, 274(53):38051-38060.
  • [68]Perez-Paya E, Orzaez M, Mondragon L, Wolan D, Wells JA, Messeguer A, et al.: Molecules that modulate Apaf-1 activity. Med Res Rev 2011, 31(4):649-675.
  • [69]Song Q, Kuang Y, Dixit VM, Vincenz C: Boo, a novel negative regulator of cell death, interacts with Apaf-1. EMBO J 1999, 18(1):167-178.
  • [70]Koonin EV, Fedorova ND, Jackson JD, Jacobs AR, Krylov DM, Makarova KS, et al.: A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol 2004, 5(2):R7. BioMed Central Full Text
  • [71]Dragon F, Gallagher JEG, Compagnone-Post PA, Mitchell BM, Porwancher KA, Wehner KA, et al.: A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 2002, 417(6892):967-970.
  • [72]Makarova KS, Wolf YI, Mekhedov SL, Mirkin BG, Koonin EV: Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucleic Acids Res 2005, 33(14):4626-4638.
  • [73]Mohri K, Vorobiev S, Fedorov AA, Almo SC, Ono S: Identification of functional residues on Caenorhabditis elegans actin-interacting protein 1 (UNC-78) for disassembly of actin depolymerizing factor/cofilin-bound actin filaments. J Biol Chem 2004, 279(30):31697-31707.
  • [74]Loew A, Ho YK, Blundell T, Bax B: Phosducin induces a structural change in transducin beta gamma. Structure 1998, 6(8):1007-1019.
  • [75]Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA: PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 2004, 32(Web Server issue):W665-W667.
  • [76]Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, et al.: PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 2007, 35(Web Server issue):W522-W525.
  • [77]Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA: Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 2001, 98(18):10037-10041.
  • [78]Li H, Robertson AD, Jensen JH: Very fast empirical prediction and rationalization of protein pKa values. Proteins 2005, 61(4):704-721.
  • [79]Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ: PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 2005, 33:W363-W367.
  • [80]Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng Z: ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 2014, 30(12):1771-1773.
  • [81]Comeau SR, Gatchell DW, Vajda S, Camacho CJ: ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 2004, 20(1):45-50.
  • [82]Schrodinger, LLC. The PyMOL molecular graphics system, version 1.3r1. 2010.
  • [83]Krissinel E, Henrick K: Inference of macromolecular assemblies from crystalline state. J Mol Biol 2007, 372(3):774-797.
  • [84]Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al.: UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 2004, 25(13):1605-1612.
  • [85]Humphrey W, Dalke A, Schulten K: VMD: visual molecular dynamics. J Mol Graph 1996, 14(1):33-38.
  • [86]Pruitt KD, Tatusova T, Brown GR, Maglott DR: NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 2012, 40(Database issue):D130-D135.
  • [87]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.
  • [88]Edgar RC, Sjolander K: A comparison of scoring functions for protein sequence profile alignment. Bioinformatics 2004, 20(8):1301-1308.
  • [89]Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo generator. Genome Res 2004, 14(6):1188-1190.
  • [90]Neer EJ, Schmidt CJ, Nambudripad R, Smith TF: The ancient regulatory-protein family of WD-repeat proteins. Nature 1994, 371(6495):297-300.
  • [91]Smith TF, Gaitatzes C, Saxena K, Neer EJ: The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 1999, 24(5):181-185.
  • [92]Ponting CP, Aravind L, Schultz J, Bork P, Koonin EV: Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. J Mol Biol 1999, 289(4):729-745.
  • [93]Donohue J: Selected topics in hydrogen bonding. In Structural chemistry and molecular biology. Edited by Rich A, Davidson NR. W. H. Freeman, San Francisco; 1968.
  • [94]Baker EN, Hubbard RE: Hydrogen bonding in globular proteins. Prog Biophys Mol Biol 1984, 44(2):97-179.
  • [95]Dehner A, Klein C, Hansen S, Muller L, Buchner J, Schwaiger M, et al.: Cooperative binding of p53 to DNA: regulation by protein-protein interactions through a double salt bridge. Angew Chem Int Edit 2005, 44(33):5247-5251.
  • [96]Mulkidjanian AY: Conformationally controlled pK-switching in membrane proteins: one more mechanism specific to the enzyme catalysis? FEBS Lett 1999, 463(3):199-204.
  文献评价指标  
  下载次数:76次 浏览次数:20次