期刊论文详细信息
Biotechnology for Biofuels
Addition of a carbohydrate-binding module enhances cellulase penetration into cellulose substrates
Vimalier Reyes-Ortiz6  Richard A Heins2  Gang Cheng2  Edward Y Kim5  Briana C Vernon1  Ryan B Elandt3  Paul D Adams4  Kenneth L Sale2  Masood Z Hadi2  Blake A Simmons2  Michael S Kent1  Danielle Tullman-Ercek4 
[1] Sandia National Laboratories, Albuquerque, NM 87185, US
[2] Sandia National Laboratories, Livermore, CA 94550, US
[3] Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA 94608, US
[4] Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, US
[5] Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, US
[6] Department of Bioengineering, University of California, Berkeley, CA 94720, US
关键词: Neutron reflectometry;    Cellulose model films;    Carbohydrate-Binding modules;    Endoglucanases;    Cellulases;   
Others  :  798003
DOI  :  10.1186/1754-6834-6-93
 received in 2012-12-10, accepted in 2013-06-18,  发布年份 2013
PDF
【 摘 要 】

Introduction

Cellulases are of great interest for application in biomass degradation, yet the molecular details of the mode of action of glycoside hydrolases during degradation of insoluble cellulose remain elusive. To further improve these enzymes for application at industrial conditions, it is critical to gain a better understanding of not only the details of the degradation process, but also the function of accessory modules.

Method

We fused a carbohydrate-binding module (CBM) from family 2a to two thermophilic endoglucanases. We then applied neutron reflectometry to determine the mechanism of the resulting enhancements.

Results

Catalytic activity of the chimeric enzymes was enhanced up to three fold on insoluble cellulose substrates as compared to wild type. Importantly, we demonstrate that the wild type enzymes affect primarily the surface properties of an amorphous cellulose film, while the chimeras containing a CBM alter the bulk properties of the amorphous film.

Conclusion

Our findings suggest that the CBM improves the efficiency of these cellulases by enabling digestion within the bulk of the film.

【 授权许可】

   
2013 Reyes-Ortiz et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706093420989.pdf 2044KB PDF download
Figure 7. 116KB Image download
Figure 6. 147KB Image download
Figure 5. 169KB Image download
Figure 4. 140KB Image download
Figure 3. 144KB Image download
Figure 2. 169KB Image download
Figure 1. 137KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Klein-marcuschamer D, Holmes B, Simmons BA, Blanch HW: Biofuel economics. In Plant biomass conversion. 1st edition. Edited by Elizabeth E. Hoboken, New Jersey: Hood PN and RP JohnWiley & Sons Inc; 2011:329-354.
  • [2]Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW: The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 2012, 109:1083-1087.
  • [3]Heinzelman P, Snow CD, Wu I, Nguyen C, Villalobos A, Govindarajan S, Minshull J, Arnold FH: A family of thermostable fungal cellulases created by structure-guided recombination. Proc Natl Acad Sci USA 2009, 106:5610-5615.
  • [4]Blanch HW, Simmons BA, Klein-Marcuschamer D: Biomass deconstruction to sugars. Biotechnol J 2011, 6:1086-1102.
  • [5]Fischer CR, Klein-Marcuschamer D, Stephanopoulos G: Selection and optimization of microbial hosts for biofuels production. Metab Eng 2008, 10:295-304.
  • [6]Percival Zhang Y-H, Himmel ME, Mielenz JR: Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 2006, 24:452-481.
  • [7]Liu W, Zhang X-Z, Zhang Z, Zhang Y-HP: Engineering of Clostridium phytofermentans Endoglucanase Cel5A for improved thermostability. Appl Environ Microbiol 2010, 76:4914-4917.
  • [8]Viikari L, Alapuranen M, Puranen T, Vehmaanpera J, Siika-aho M: Thermostable enzymes in lignocellulose hydrolysis. Adv Biochem Eng Biotechnol 2007, 108:121-145.
  • [9]Kim T-W, Chokhawala HA, Nadler D, Blanch HW, Clark DS: Binding modules alter the activity of chimeric cellulases: effects of biomass pretreatment and enzyme source. Biotechnol Bioeng 2010, 107:601-611.
  • [10]Arnold FH: The race for new biofuels. Eng Sci 2008, 71:12-19.
  • [11]Te’o VSJ, Saul DJ, Bergquist PL: CelA, another gene coding for a multidomain cellulase from the extreme thermophile Caldocellum saccharol icum. Appl Microbiol Biotechnol 1995, 43:291-296.
  • [12]Carbohydrate Active Enzymes Database[http://www.cazy.org/ webcite]
  • [13]Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 2009, 37:D233-D238.
  • [14]Boraston AB, Bolam DN, Gilbert HJ, Davies GJ: Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 2004, 382:769-781.
  • [15]Bolam David N, Ciruela A, McQueen-Mason S, Simpson P, Williamson Michael P, Rixon Jane E, Boraston A, Hazlewood Geoffrey PGHJ: Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem J 1998, 781:775-781.
  • [16]Gilad R, Rabinovich L, Yaron S, Bayer EA, Lamed R, Gilbert HJ, Shoham Y: CelI, a noncellulosomal family 9 enzyme from Clostridium thermocellum, is a processive endoglucanase that degrades crystalline cellulose. J Bacteriol 2003, 185:391-398.
  • [17]Beckham GT, Bomble YJ, Bayer EA, Himmel ME, Crowley MF: Applications of computational science for understanding enzymatic deconstruction of cellulose. Curr Opin Biotechnol 2011, 22:231-238.
  • [18]Din N, Gilkes NR, Tekant B, Miller RC, Warren AJ, Kilburn DG: Non-hydrolytic disruption of cellulose fibres by the binding domain of a bacterial cellulase. Nat Biotechnol 1991, 9:1096-1099.
  • [19]Wang L, Zhang Y, Gao P: A novel function for the cellulose binding module of cellobiohydrolase I. Sci China C Life Sci 2008, 51:620-629.
  • [20]Cheng G, Liu Z, Murton JK, Jablin M, Dubey M, Majewski J, Halbert C, Browning J, Ankner J, Akgun B, Wang C, Esker AR, Sale KL, Simmons BA, Kent MS: Neutron reflectometry and QCM-D study of the interaction of cellulases with films of amorphous cellulose. Biomacromolecules 2011, 12:2216-2224.
  • [21]Eriksson J, Malmsten M, Tiberg F: Enzymatic degradation of model cellulose films. J Colloid Interface Sci 2005, 284:99-106.
  • [22]Zhong L, Matthews JF, Crowley MF, Rignall T, Talón C, Cleary JM, Walker RC, Chukkapalli G, McCabe C, Nimlos MR, Brooks CL III, Himmel ME, Brady JW: Interactions of the complete cellobiohydrolase I from Trichodera reesei with microcrystalline cellulose Iβ. Cellulose 2007, 15:261-273.
  • [23]Turon X, Rojas OJ, Deinhammer RS: Enzymatic kinetics of cellulose hydrolysis: a QCM-D study. Langmuir 2008, 24:3880-3887.
  • [24]Josefsson P, Henriksson G, Wågberg L: The physical action of cellulases revealed by a quartz crystal microbalance study using ultrathin cellulose films and pure cellulases. Biomacromolecules 2008, 9:249-254.
  • [25]Ma A, Hu Q, Qu Y, Bai Z, Liu W, Zhuang G: The enzymatic hydrolysis rate of cellulose decreases with irreversible adsorption of cellobiohydrolase I. Enzyme Microb Technol 2008, 42:543-547.
  • [26]Fox JM, Levine SE, Clark DS, Blanch HW: Initial- and processive-cut products reveal cellobiohydrolase rate limitations and the role of companion enzymes. Biochemistry 2012, 51:442-452.
  • [27]Suchy M, Linder MB, Tammelin T, Campbell JM, Vuorinen T, Kontturi E: Quantitative assessment of the enzymatic degradation of amorphous cellulose by using a quartz crystal microbalance with dissipation monitoring. Langmuir 2011, 27:8819-8828.
  • [28]Cheng G, Datta S, Liu Z, Wang C, Murton JK, Brown PA, Jablin MS, Dubey M, Majewski J, Halbert CE, Browning JF, Esker AR, Watson BJ, Zhang H, Hutcheson SW, Huber DL, Sale KL, Simmons BA, Kent MS: Interactions of endoglucanases with amorphous cellulose films resolved by neutron reflectometry and quartz crystal microbalance with dissipation monitoring. Langmuir 2012, 28:8348-8358.
  • [29]Datta S, Holmes B, Park JI, Chen Z, Dibble DC, Hadi M, Blanch HW, Simmons BA, Sapra R: Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis. Green Chem 2010, 12:338.
  • [30]Pereira JH, Chen Z, McAndrew RP, Sapra R, Chhabra SR, Sale KL, Simmons BA, Adams PD: Biochemical characterization and crystal structure of endoglucanase Cel5A from the hyperthermophilic Thermotoga maritima. J Struct Biol 2010, 172:372-379.
  • [31]Eckert K, Ernst HA, Schneider E, Larsen S, Lo Leggio L: Crystallization and preliminary X-ray analysis of Alicyclobacillus acidocaldarius endoglucanase CelA. Acta Crystallogr D Biol Crystallogr 2002, 59:139-141.
  • [32]Zhang S, Lao G, Wilson DB: Characterization of a Thermomonospora fusca exocellulase. Biochemistry 1995, 34:3386-3395.
  • [33]Lykidis A, Mavromatis K, Ivanova N, Anderson I, Land M, DiBartolo G, Martinez M, Lapidus A, Lucas S, Copeland A, Richardson P, Wilson DB, Kyrpides N: Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. J Bacteriol 2007, 189:2477-2486.
  • [34]McLean BW, Bray MR, Boraston AB, Gilkes NR, Haynes CA, Kilburn DG: Analysis of binding of the family 2a carbohydrate-binding module from Cellulomonas fimi xylanase 10A to cellulose: specificity and identification of functionally important amino acid residues. Protein Eng 2000, 13:801-809.
  • [35]Chhabra S, Shockley K: Regulation of endo-acting glycosyl hydrolases in the hyperthermophilic bacterium Thermotoga maritima grown on glucan- and mannan-based polysaccharides. Appl Environ Microbiol 2002, 68:545-554.
  • [36]Eckert K, Zielinski F, Lo Leggio L, Schneider E: Gene cloning, sequencing, and characterization of a family 9 endoglucanase (CelA) with an unusual pattern of activity from the thermoacidophile Alicyclobacillus acidocaldarius ATCC27009. Appl Microbiol Biotechnol 2002, 60:428-436.
  • [37]Cheng G, Varanasi P, Li C, Liu H, Melnichenko YB, Simmons BA, Kent MS, Singh S: Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 2011, 12:933-941.
  • [38]Fox JM, Jess P, Jambusaria RB, Moo GM, Liphardt J, Clark DS, Blanch HW: A single-molecule analysis reveals morphological targets for cellulase synergy. Nat Chem Biol 2013, 9:256-361. Published Online
  • [39]Notenboom V, Boraston AB, Chiu P, Freelove AC, Kilburn DG, Rose DR: Recognition of cello-oligosaccharides by a family 17 carbohydrate-binding module: an X-ray crystallographic, thermodynamic and mutagenic study. J Mol Biol 2001, 314:797-806.
  • [40]Jamal S, Nurizzo D, Boraston AB, Davies GJ: X-ray crystal structure of a non-crystalline cellulose-specific carbohydrate-binding module: CBM28. J Mol Biol 2004, 339:253-258.
  • [41]Kontturi E, Suchy M, Penttilä P, Jean B, Pirkkalainen K, Torkkeli M, Serimaa R: Amorphous characteristics of an ultrathin cellulose film. Biomacromolecules 2011, 12:770-777.
  • [42]Penfold J, Thomas RK: The application of the specular reflection of neutrons to the study of surfaces and interfaces. J Phys Condens Matter 1990, 19:1369.
  • [43]Russell TP: X-ray and neutron reflectivity for the investigation of polymers. Mater Sci Rep 1990, 5:171-271.
  • [44]Reese ET, Siu RGH, Levinson HS: The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol 1950, 59:485-497.
  • [45]Arantes V, Saddler JN: Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 2010, 3:4. BioMed Central Full Text
  • [46]Lee I, Evans BR, Woodward J: The mechanism of cellulase action on cotton fibers: evidence from atomic force microscopy. Ultramicroscopy 2008, 82:213-221.
  • [47]Boraston AB, Kwan E, Chiu P, Warren RAJ, Kilburn DG: Recognition and hydrolysis of noncrystalline cellulose. J Biol Chem 2003, 278:6120-6127.
  • [48]Gunnarsson LC, Zhou Q, Montanier C, Karlsson EN, Brumer H, Ohlin M: Engineered xyloglucan specificity in a carbohydrate-binding module. Glycobiology 2006, 16:1171-1180.
  • [49]Hervé C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP: Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Natl Acad Sci USA 2010, 107:15293-15298.
  • [50]Arora R, Manisseri C, Li C, Ong MD, Scheller HV, Vogel K, Simmons BA, Singh S: Monitoring and analyzing process streams towards understanding ionic liquid pretreatment of switchgrass (Panicum virgatum L.). BioEnergy Research 2010, 3:134-145.
  • [51]Miller GL: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 1959, 31:426-428.
  • [52]Gunjikar TP, Sawant SB, Joshi JB: Shear deactivation of cellulase, exoglucanase, endoglucanase, and beta-glucosidase in a mechanically agitated reactor. Biotechnol Prog 1996, 17:1166-1168.
  • [53]Kaya F, Heitmann JA, Joyce TW: Cellulase binding to cellulose fibers in high shear fields. J Biotechnol 1994, 36:1-10.
  • [54]Reese ET, Ryu DY: Shear inactivation of cellulase of Trichoderma reesei. Enzyme Microb Technol 1980, 2:239-240.
  • [55]Lenting HBM, Warmoeskerken MMCG: Mechanism of interaction between cellulase action and applied shear force, an hypothesis. J Biotechnol 2001, 89:217-226.
  • [56]Kaya F, Heitmann JA, Joyce TW: Deactivation of cellulase and hemicellulase in high shear fields. Cellul Chem Technol 1996, 30:49-56.
  • [57]Kontturi E, Thu PC, Niemantsverdriet JWH: Cellulose model surfaces-simplified preparation by spin coating and characterization by X-ray photoelectron spectroscopy, infrared spectroscopy, and atomic force microscopy. Langmuir 2003, 19:5735-5741.
  • [58]Rivera-Armenta JL, Heinze T, Mendoza-Martínez AM: New polyurethane foams modified with cellulose derivatives. Eur Polym J 2004, 40:2803-2812.
  • [59]Heinrich F, Ng T, Vanderah DJ, Shekhar P, Mihailescu M, Nanda H, Lösche M: A New lipid anchor for sparsely tethered bilayer lipid membranes. Langmuir 2009, 25:4219-4229.
  文献评价指标  
  下载次数:23次 浏览次数:23次