学位论文详细信息
Oxidative Damage in DNA: an Exploration of Various DNA Structures
DNA structures;Oxidative damage;Charge transport in DNA;M-DNA;FRET;Quadruplex DNA;DNA photocleavage;Viologen linked acridine derivatives
Ndlebe, Thabisile S. ; Chemistry and Biochemistry
University:Georgia Institute of Technology
Department:Chemistry and Biochemistry
关键词: DNA structures;    Oxidative damage;    Charge transport in DNA;    M-DNA;    FRET;    Quadruplex DNA;    DNA photocleavage;    Viologen linked acridine derivatives;   
Others  :  https://smartech.gatech.edu/bitstream/1853/11467/1/ndlebe_thabisile_s_200608_phd.pdf
美国|英语
来源: SMARTech Repository
PDF
【 摘 要 】

Research efforts to determine the causes, effects and locations of mutations within the human genome have been widely pursued due to their role in the development of various diseases.The main cause of mutations in vivo is oxidative damage to DNA via oxidants and free radical species.Numerous studies have been performed in vitro to determine how oxidative damage is induced in DNA.Most of these in vitro studies require photosensitizers to initiate the oxidative damage through various mechanisms.For the purposes of this research, all the photosensitizers that were used initiated oxidative damage in DNA through the electron transfer mechanism.In the charge transport studies, an anthraquinone photosensitizer was covalently linked to the 5 end of DNA by a short carbon tether in order to determine the pattern of damage induced along the length of the DNA.Anthraquinone preferentially damages guanine bases.Our first work sought to determine the effects of charge transport through guanine rich quadruplex DNA dimers.The dimers were formed by the combination of two hairpins with duplex overhangs extending beyond the quadruplex region.This enabled the optimal comparison of the effects of charge transport between duplex and quadruplex DNA structures.Another area of research we pursued in this area was to determine the effects of charge transport in M-DNA (a novel DNA conformation that was reported to form in the presence of zinc ions at a pH above 8).Earlier work on M-DNA suggested that it behaved like a molecular wire.Our research attempted to determine the effects of charge transport on this structure in order to show the behavior of a DNA molecular wire as compared to the standard studies performed in this area on normal B-DNA structures.Lastly, in collaboration with Dr. Ramaiah and colleagues we designed some viologen linked acridine photosensitizers which were tested for any ability to cleave GGG bulges.In preliminary studies, these viologen linked acridine derivatives showed preferential cleavage for guanine bases.They were not covalently bound to DNA, although they could potentially form non covalent interactions with DNA such as intercalation and/or groove binding.Our overall research goal was to determine the extent and overall effect of oxidative damage (using different photosensitizers) on the various DNA structures mentioned above.

【 预 览 】
附件列表
Files Size Format View
Oxidative Damage in DNA: an Exploration of Various DNA Structures 7219KB PDF download
  文献评价指标  
  下载次数:66次 浏览次数:18次