学位论文详细信息
Lithium niobium oxide multifunctional materials and applications in neuromorphic computing
Lithium niobite;Molecular beam epitaxy;Lithium niobate;Thin films;Neuromorphic computing
Tellekamp, Marshall B. ; Doolittle, William A. Electrical and Computer Engineering Yoder, Paul D. Hunt, William D. Alamgir, Faisal Raychowdhury, Arijit ; Doolittle, William A.
University:Georgia Institute of Technology
Department:Electrical and Computer Engineering
关键词: Lithium niobite;    Molecular beam epitaxy;    Lithium niobate;    Thin films;    Neuromorphic computing;   
Others  :  https://smartech.gatech.edu/bitstream/1853/60701/1/TELLEKAMP-DISSERTATION-2017.pdf
美国|英语
来源: SMARTech Repository
PDF
【 摘 要 】

This work explores the growth fundamentals and multifunctional applications of materials in the Li-Nb-O family with specific focus on the memristive applications of LiNbO2 as a synaptic analogue in neuromorphic computing architectures. Initial studies include the development of a flux versus temperature growth phase diagram for lithium niobium oxides using molecular beam epitaxy at high substrate temperatures. Using this growth understanding, various multifunctional materials were epitaxially grown and characterized by structural, chemical, and morphological methods. The optical and electrical characteristics of Li1-xNbO2 were also investigated as a function of lithium stoichiometry. LiNbO2 samples were then fabricated into devices for use in neuromorphic computing, specifically memristors and batteries. Among other important studies, the use of Li-alloying contacts is explored as a method to induce non-volatile behavior in natively volatile LiNbO2 memristors, a feature critical for neuromorphic behavior. The findings suggest that LiNbO2 can exhibit memristive resistance changes in an analog manner which show tunable timescale ranges appropriate for biologically realistic synaptic behavior. The current and future state of memristors in neuromorphic computing is discussed, focusing on the role of volatile decay and short term effects in biological systems.

【 预 览 】
附件列表
Files Size Format View
Lithium niobium oxide multifunctional materials and applications in neuromorphic computing 4429KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:24次