学位论文详细信息
Graphs, codes, and colorings
sum choice number;list coloring;product dimension;graph representation;codes
Kantor, Ida
关键词: sum choice number;    list coloring;    product dimension;    graph representation;    codes;   
Others  :  https://www.ideals.illinois.edu/bitstream/handle/2142/18247/Kantor_Ida.pdf?sequence=1&isAllowed=y
美国|英语
来源: The Illinois Digital Environment for Access to Learning and Scholarship
PDF
【 摘 要 】

\noindent{This thesis focuses on topics in extremal combinatorics.}Given an integer-valued function $f$ defined on the vertices of a graph $G$, we say $G$ is {\em $f$-choosable} if for every collection of lists with list sizes specified by $f$ there is a proper coloring using the colors from the lists.The {\em sum choice number}, $\chi_{sc}(G)$, is the minimumof $\sum f(v)$ such that $G$ is $f$-choosable.We show that if $q\geq 4 a^2\loga$, then there exist constants $c_1$ and $c_2$ such that\[ 2q+c_1a\sqrt{q\log {a}}\leq \chi_{\rm sc}(K_{a,q})\leq 2q+c_2a\sqrt{q\log {a}}.\]As a consequence, $\chi_{sc}(G)/|V(G)|$ can be bounded while the minimum degree $\delta_{\rm min}(G)\to \infty$. This is not true for the list chromatic number, $\chi_\ell(G)$.We further prove that, for fixed $a$, the limit $\lim_{q\to \infty} (\chi_{\rm sc}(K_{a,q})-2q)/\sqrt{q}$ exists, and we give tight bounds for sum choice numbers of the graphs $G_{a,q}$, which are obtained from $K_{a,q}$ by adding all possible edges in the part of size $a$. A pair of ordered $k$-tuples $(x_1,...,x_k)$, $(y_1,...,y_k)$ is {\em reverse-free} if, for all $i

【 预 览 】
附件列表
Files Size Format View
Graphs, codes, and colorings 574KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:20次