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Abstract

This thesis focuses on topics in extremal combinatorics.

Given an integer-valued function f defined on the vertices of a graph G, we say

G is f -choosable if for every collection of lists with list sizes specified by f there is a

proper coloring using the colors from the lists. The sum choice number, χsc(G), is the

minimum of
∑
f(v) such that G is f -choosable. We show that if q ≥ 4a2 log a, then

there exist constants c1 and c2 such that

2q + c1a
√
q log a ≤ χsc(Ka,q) ≤ 2q + c2a

√
q log a.

As a consequence, that χsc(G)/|V (G)| can be bounded while the minimum degree

δmin(G)→∞. This is not true for the list chromatic number, χ`(G).

We further prove that, for fixed a, the limit limq→∞(χsc(Ka,q) − 2q)/
√
q exists, and

we give tight bounds for sum choice numbers of the graphs Ga,q, which are obtained

from Ka,q by adding all possible edges in the part of size a.

A pair of ordered k-tuples (x1, ..., xk), (y1, ..., yk) is reverse-free if, for all i < j,

(xi, xj) does not equal (yj, yi). Let F (n, k) be the maximum size of a pairwise reverse-

free set of k-tuples with k distinct entries taken from [n]. Allowing repetitions within

the k-tuples, we analogously define F (n, k).

We determine the asymptotics of F (n, 3) and F (n, 3) as n approaches infinity, and

we obtain exact formulas if n is a power of 3. We present some bounds for F (n, k) for

general k and for other related quantities. We also present upper and lower bounds

for the important special case F (n, n) (i.e., reverse-free permutations).

We also determine the order of magnitude of F (n, k) for n fixed and k →∞.

Finally, the product dimension dim(G) of a graph G is the minimum k such that

G is an induced subgraph of the tensor product of k complete graphs. We focus on

bounding this parameter on the family of trees. We improve the known upper and
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lower bounds, and we determine the exact values of product dimension for infinitely

many trees. We extend some of the results to odd dimension θodd(G), defined as the

minimum k such that we can assign subsets of [k] to the vertices of G in such a way

that two vertices are adjacent if and only if the corresponding sets have odd-sized

intersection.
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Prague also had a large influence on me, especially Professor Jaroslav Nešeťril.
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Chapter 1

Introduction

In this thesis, we present results in three areas of extremal combinatorics. Two of

these areas relate graphs and codes in two different ways.

A code is a family of lists of the same (finite) length, with entries taken from a

given underlying set. The elements of the family are called codewords. In Chapter 3

we define a graph F on the vertex set of all k-tuples with entries in [n] by making

(x1, . . . , xk) and (y1, . . . , yk) adjacent if there are indices i, j such that xi 6= xj, and

(xi, xj) = (yj, yi); such a pair of indices is a reversed pair. Our aim is to determine the

maximum size of a reverse-free code, which is nothing more than an independent set

in F . We also ask what the size of a maximum clique is in F . We are especially con-

cerned with a special case of these problems that we get by considering the subgraph

of F induced by k-tuples that have no repeated entries. These questions are similar

in spirit to questions about intersecting permutations, in particular the analogue of

the Erdős-Ko-Rado problem.

In Chapter 4, the interaction between graphs and codes is of a different kind.

Motivated by applications in computer science, we seek an efficient representation

of graphs in computers. One way to do that, inspired by the notion of dimension

in partially ordered sets, is to embed the graph in a product of complete graphs.

The resulting measure of “complexity” of the graph is called product dimension. It is

defined as the minimum k such that it is possible to assign k-tuples to the vertices of

the graph so that two vertices are adjacent if and only if their k-tuples differ in all k

coordinates. We improve the current bounds on product dimension of trees, and we

determine the exact values for trees that belong to certain classes.

Finally, the third area deals with a particular generalization of graph coloring. The

list chromatic number of a graph G is the minimum k such that whenever lists of

size k are assigned to the vertices of G, the graph can be properly colored with colors

chosen from these sets. We get a parameter called sum choice number by allowing
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different list sizes k1, . . . , kn, but keeping the aim of minimizing the sum
∑
ki subject

to the condition that for any list assignment with list sizes ki, one can color the graph

using the colors from the lists. Among other results, we determine the sum choice

number for the complete bipartite graphs with one part much larger than the other.

As a consequence, we observe that, unlike list chromatic number, sum choice number

does not necessarily grow with average degree.

1.1 List colorings with unequal list sizes

Questions about graph coloring are among the most investigated in combinatorics,

in part because they naturally model many engineering problems. For example, we

need to assign frequencies to several transmitters in such a way that interfering trans-

mitters always get different frequencies. Depending on the specific problem and the

restrictions that we face, we get different variants of the coloring problem. If each

transmitter has a set of admissible frequencies assigned to it, the appropriate model

is a version of list coloring.

In the list coloring problem, each vertex v has a set L(v) of available colors assigned

to it (such L is called a list assignment), and the question is whether it is possible to

color the graph properly with colors chosen from the lists. If such coloring exists, we

call the list assignment sufficient, otherwise it is insufficient.
The list chromatic number χ`(G), defined by Vizing in [73] and later independently

by Erdős, Rubin, and Taylor in [26], is the minimum k such that every list assignment

with lists of sizes at least k for every vertex of G is sufficient. This natural extension

of graph coloring has been the subject of considerable attention in the last several

decades. For every graphG, the chromatic number is a lower bound for list chromatic

number. The complete bipartite graph K3,3 is a well-known example of a graph for

which the inequality is strict. The assignment of the sets {{1, 2}, {1, 3}, {2, 3}} to the

vertices of each part is insufficient, hence proving χ`(K3,3) ≥ 3 > 2 = χ(K3,3). Using

similar insufficient list assignments for larger bipartite graphs, one can prove that

there is a constant c such that χ`(Kn,n) > c log n. On the other hand, one of the first

proofs to use probability in combinatorics, inspiring the development of what came

to be known as probabilistic method, was the upper bound χ`(Kn,n) ≤ dlog2 ne + 1,
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which was proved in the seminal paper [26]. The exact value of χ`(Kn,n) is still

unknown.

We consider a generalization of list chromatic number in which the vertices can

have different list sizes. If f is an integer-valued function defined on the vertices

of G, an f -assignment on G is a list assignment with list sizes specified by f . The

function f itself is sufficient if every f -assignment L is sufficient. The sum choice
number χsc(G) is the minimum of

∑
v∈V (G) f(v) over all sufficient f .

Sum choice number was defined by Isaak in [39], and many results appear for

example in [10, 36, 37]. The origins of the idea can be traced back to [26], however,

where it was observed that a special f is sufficient; this fact was used to prove the

analogue of Brooks’ Theorem for list coloring.

For every graph G, the upper bound χsc(G) ≤ |V (G)| ·χ`(G) is trivial. For balanced

complete bipartite graphs, we have a lower bound of the same order of magnitude,

i.e., allowing different list sizes does not alter the problem significantly. The situation

is very different for unbalanced complete bipartite graphs. Our main result provides

good bounds for χsc(Ka,q). In particular, we prove that for some constants c1 and c2,

if q ≥ 4a2 log a, then

2q + c1a
√
q log a ≤ χsc(Ka,q) ≤ 2q + c2a

√
q log a.

We prove the lower bound by construction and the upper bound using the probabilis-

tic method. It turns out that in both cases, the important functions f to consider are

those with f(v) = 2 for all vertices v that belong to the larger part of Ka,q. A con-

venient way to think about the f -assignments with such f is to define a hypergraph

with hyperedges corresponding to the lists of the vertices of the smaller part of Ka,q

and a graph with edges corresponding to the lists of the larger part. The question

can then be rephrased as a question about hypergraph covering.

Alon proved in [4] that χ` is bounded below by a function of the average degree

of the graph. This is in contrast to the behavior of chromatic number – the bal-

anced complete bipartite graphs provide a sequence of graphs with average degree

approaching infinity, while having fixed chromatic number (equal to 2). A natural

question is whether allowing different list sizes changes the behavior of the param-

eter in this respect. The most interesting consequence of our main result is that the

conclusion of Alon’s theorem is no longer true in this case. We have a sequence of
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graphs whose average degree tends to infinity, and a sequence of corresponding suf-

ficient functions such that the average list sizes given by the functions do not exceed

the value 3. We have

lim
a→∞, q>>a2 log a

|E(Ka,q)|
a+ q

=∞, lim
a→∞, q>>a2 log a

χsc(Ka,q)

a+ q
= 2. (1.1)

The average degree of Ka,q tends to 2a as q →∞, but χsc(Ka,q)/(a+ q) tends to 2.

In Section 2.7 we prove that for fixed a, the limit limq→∞
χsc(Ka,q)−2q√

q
exists. We do

this by again reducing the problem to considering only the functions f with f(v) = 2

for all v that belong to the larger part, and treating each such f as a point in a-

dimensional Euclidean space. Roughly speaking, f is insufficient if the point is under

some particular quadric surface. To find the limit, we slide a hyperplane until it

touches the boundary of the set.

We also ask what happens when one adds edges to the smaller part of Ka,q. Let

Ga,q be the graph that we get by adding all
(
a
2

)
such edges. For this graph, we have

2q + c1

√
q(a− 1) ≤ χsc(Ga,q) ≤ 2q + c2

√
q(a− 1) for some constants c1 and c2. The

upper bound is established by proving a generalization of Turán’s Theorem.

The results of this section are joint work with Zoltán Füredi.

1.2 Reverse-free codes and permutations

In Chapter 3 we consider a problem inspired by coding theory. Let X be an n-element

underlying set. Two k-tuples (x1, ..., xk), (y1, ..., yk) of elements from X are reverse-
free if, for all pairs i, j such that xi 6= xj, (xi, xj) does not equal (yj, yi). Let F (n, k)

be the maximum size of a (pairwise) reverse-free set of k-tuples in which each k-

tuple has k distinct entries. Allowing repetitions within the k-tuples, we analogously

define F (n, k). We also consider families of k-tuples such that no two of them are

reverse-free. We call such family flip-full and denote its maximum size G(n, k) if no

repetitions are allowed, and G(n, k) otherwise.

For a reverse-free family F , define a matrix M(F) by listing the elements of F as

its rows. The problem of determining the maximum size of a reverse-free family is

equivalent to determining the maximum number of rows of a k-column matrix that
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has no submatrix

(
a b

b a

)
with a 6= b. Many other coding theory problems can be

formulated in terms of matrices with forbidden submatrices, or with certain subma-

trices required. The most notable example of the former is the work of Sauer [64],

Shelah [65], and Vapnik and Chervonenkis [72] concerning VC-dimension. For an

example of the latter, see [44].

All problems in Chapter 3 can be formulated in terms of independence and clique

numbers of suitably defined graphs whose vertex set is either the set of k-tuples

with entries in [n], or permutations of [n]. Similar problems were considered in an

information theoretic setting, for example in [48].

Perhaps the best known graph on the set of permutations of [n] is the derangement

graph. In this graph, two permutations π and σ are adjacent if they are not inter-

secting, i.e., π(i) 6= σ(i) holds for all i. We say that two permutations π and σ are

t-intersecting if there are at least t indices i such that π(i) = σ(i). Extending the defi-

nition of derangement graph, we define a new graph by letting π and σ be adjacent if

they are not t-intersecting. A clique in this graph is a family F of permutations such

that M(F) does not contain the submatrix(
a1 a2 . . . at

a1 a2 . . . at

)

for any choice of a1, . . . , at ∈ [n]. The independence number of this graph was deter-

mined recently in [23] to be equal to (n−t)! whenever n is large enough with respect

to t, confirming a conjecture by Deza and Frankl [30] and proving a version of the

Erdős-Ko-Rado Theorem for t-intersecting permutations.

In our case, two k-tuples are adjacent if they are not reverse-free. The indepen-

dence number and the clique number are equal to F (n, k) or F (n, k), and G(n, k) or

G(n, k), depending on the choice of the vertex set. We will focus mostly on reverse-

free families, but will prove some results about families that are flip-full as well.

The set of all increasing (or nondecreasing) k-tuples is reverse-free, and hence

F (n, k) ≥
(
n
k

)
and F (n, k) ≥

(
n+k−1

k

)
. It is still an open problem to determine whether

these inequalities are strict. We show however that the sequence F (n, k)/
(
n
k

)
has a

limit, if k is fixed and n→∞.

We determine the values of the parameter for small values of n and k. In particular,

in Section 3.4 we show an iterative construction of a reverse-free family of triples,
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providing a lower bound for F (n, 3). In Section 3.5 we prove an upper bound with

the same order of magnitude as the lower bound, and equal to it whenever n is a

power of 3. We prove similar results for F (n, 3) in Section 3.6.

We provide bounds for G(n, n) and F (n, n). In this case, the k-tuples are actually

permutations of n.

Finally, in Section 3.10 we consider the opposite problem: determining the behav-

ior of F (n, k) with n fixed and k → ∞. We use VC-dimension results to determine

the asymptotics in this case.

The results of this section are joint work with, Zoltán Füredi, Angelo Monti, and

Blerina Sinaimeri.

1.3 Product dimension of trees

Many applications in computer science require a memory-efficient way of storing

graphs and posets (viewed as directed acyclic graphs) that at the same time allows

for fast retrieval of the structure, such as the edges of the graph or the poset relation.

Dushnik and Miller defined the dimension of poset P in [19] as the minimum number

t such that P can be embedded into the product of t chains. Using this embedding,

we obtain a vector ϕ(z) = (ϕ1(z), . . . , ϕt(z)) for every vertex z in a natural way, with

the property that x ≤ y if and only if ϕi(x) ≤ ϕi(y) holds for all i. The vectors contain

all information about the poset. If the dimension is small, then such a representation

is efficient. The dimension can be thought of as a measure of non-linearity of P .

For graphs, dimension can be defined analogously, using an embedding into a

product of cliques. Cliques are a natural analogue of chains, and are considered

“simple” objects in this context. The tensor product G1×G2 of two graphs, G1 and G2,

has V (G1)×V (G2) as its vertex set, and the edges are the pairs {(u1, v1), (u2, v2)} such

that u1u2 ∈ E(G1) and v1v2 ∈ E(G2). The product dimension of a graph G, introduced

by Nešeťril and Pultr in [56] and denoted dim(G), is the minimum t such that G is

an induced subgraph of a direct product of t cliques. In Chapter 4 we improve the

known upper and lower bounds on dimension of trees.

For many graphs, the best known lower bound on the dimension was given by

a powerful theorem that was proved by Lovász, Nešeťril and Pultr in [52]. They

proved that if we find distinct vertices x1, . . . , xk and some vertices y1, . . . , yk such
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that xiyi ∈ E(G) for all i, and xiyj 6∈ E(G) whenever i < j, then dim(G) ≥ dlog2 ke.
This lower bound was the best known so far for trees as well.

In Section 4.3 we improve this lower bound. We prove that if P1, . . . , Pm are

vertex-disjoint paths of lengths s1, . . . , sm respectively in the tree T , then dim(T ) ≥
dlog2(

∑
si)e.

The best known upper bound constructions were given by Alles in [2]. We give a

construction that improves Alles’ bound in many cases, including all trees that have

no vertices of degree 2.

In Section 4.5 we determine the dimension exactly for some families of trees.

Finally, we prove analogous lower bound theorems for the odd dimension, θodd(G),

defined in [20] as the minimum k such that we can assign subsets of [k] to the vertices

of G in such a way that uv ∈ E(G) if and only if the intersection of the corresponding

sets has odd size.

1.4 Basic definitions

A graph G consists of two sets, an underlying set V (G) of vertices and a set E(G) of

unordered pairs of distinct elements of V (G) called edges. The order of a graph G

is the number of vertices of G, while size is the number of edges. Throughout the

thesis, we will reserve the letter n to denote the order of a graph.

We denote the edge {u, v} simply by uv. The endpoints of an edge uv are the

vertices u and v. When u and v are endpoints of some edge, they are adjacent. Pairs

of vertices that do not belong to E(G) are called non-edges. The neighborhood N(v) of

a vertex v is the set of vertices adjacent to v. The degree of a vertex v, denoted d(v), is

the size of its neighborhood. The minimum degree δ(G) of a graph G is the minimum

of d(v) over all vertices v ∈ V (G). The maximum degree ∆(G) is defined analogously.

The average degree dave(G) is equal to (
∑
d(v))/|V (G)|.

We say that a graph H is a subgraph of a graph G (or that G contains H) if there

is an injection ψ : V (H) → V (G) such that ψ(u)ψ(v) ∈ E(G) whenever uv ∈ E(H).

The subgraph is induced if φ satisfies the additional condition that uv 6∈ E(H) im-

plies ψ(u)ψ(v) 6∈ E(G), for all u, v ∈ V (H). A bijection ψ : V (G) → V (H) is an

isomorphism if uv ∈ E(G) if and only if ψ(u)ψ(v) ∈ V (H).

Many isomorphism classes of graphs are important enough that they have names.
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A complete graph Kn has n vertices, every two of which are adjacent. The vertices of

a bipartite graph can be partitioned into two parts so that no edge has both endpoints

in the same part. A complete bipartite graph Ks,t is a bipartite graph with parts of

sizes s and t, and st edges. A cycle Cn is any graph isomorphic to the graph with

vertices v1, . . . , vn and edges v1v2, v2v3, . . . , vn−1vn, vnv1. A path Pn is isomorphic to

the graph with vertices w1, . . . , wn and edges wiwi+1 ∈ E(G) for i = 1, . . . , n− 1. The

two vertices of degree 1 are its endpoints; the other vertices are internal. The length
of a path is its number of edges.

A graph G is connected if, for every u, v ∈ V (G), there is a path in G with endpoints

u and v. A component of G is a maximal connected subgraph of G.

A forest is a graph that contains no cycle. A tree is a connected forest. In particular,

forests and trees are examples of bipartite graphs, and paths are examples of trees.

A rooted tree is a tree with one distinguished vertex, called the root. A leaf in a tree is

a vertex of degree 1; every tree with at least two vertices has at least two leaves. An

n-vertex star is a tree with n− 1 leaves, all adjacent to a single vertex.

The vertices of the Kneser graph K(n, k) are the k-element subsets of [n]. The edges

are the pairs of disjoint sets. The graph K(5, 2) is also called the Petersen graph. The

hypercube Qk has all binary k-tuples of length k as its vertices, with two of them

adjacent when they differ only in one coordinate. A matching in a graph G is a set

of disjoint edges. A matching is perfect if every vertex of G is contained in one of the

edges of the matching.

A subsetW of V (G) is called an independent set if no two vertices inW are adjacent.

A subset of pairwise adjacent vertices in a graphG is called a clique. The independence
number α(G) is the maximum size of an independent set in G. Similarly, the clique
number ω(G) is the maximum size of a clique in G. The distance d(u, v) between two

vertices u, v ∈ V (G) is the length of a shortest path with endpoints u and v in G. The

eccentricity ε(v) of a vertex v is the maximum of d(v, w) over all vertices w ∈ V (G).

The minimum eccentricity over all vertices of G is called the radius of G. The center
of G is the set of vertices with the least eccentricity. If G is a tree, then its center

consists of one vertex or two adjacent vertices. The diameter of G, diam(G), is the

maximum of d(u, v) over all pairs u, v. For a tree T with radius r, we have either

diam(T ) = 2r or diam(T ) = 2r − 1, depending whether the center of T has one or

two vertices.

The Cartesian product of the sets A and B is defined as {(a, b) : a ∈ A, b ∈ B}.
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Besides the tensor product, we will also need the Cartesian product G12G2 of two

graphs G1 and G2. The vertex set is again V (G1)×V (G2), and the edges are the pairs

{(u1, v1), (u2, v2)} such that u1 = u2 and v1v2 ∈ E(G2), or u1u2 ∈ E(G1) and v1 = v2.

A proper coloring of a graph G is an assignment of a label c(v) to each vertex v

such that c(u) 6= c(v) whenever uv ∈ E(G). The graph G is k-colorable if there is a

proper coloring of G with labels 1, . . . , k. The chromatic number of G, written χ(G),

is the minimum k such that G is k-colorable. Given a graph G, we can form the line
graph of G, denoted L(G), with V (L(G)) = E(G), by making uv, xy ∈ E(G) adjacent

if {u, v} ∩ {x, y} 6= ∅. A proper edge-coloring of G is a proper coloring of the line

graph of G. The chromatic index is the minimum k for which there exists a proper

edge-coloring of G.

To emphasize that the edges are unordered pairs, a graph defined as we did in the

first paragraph is sometimes called undirected. This is in contrast to directed graphs
(or digraphs), whose edge sets consist of ordered pairs (u, v) of distinct vertices (di-
rected edges). The vertex u in a directed edge (u, v) is called the tail, and the vertex v

is the head. A cycle of length k in a directed graph G consists of k vertices v1, . . . , vk

and the edges (v1, v2), (v2, v3), . . . , (vk−1, vk), (vk, v1). A directed graph G is acyclic if it

has no cycle. A tournament is a directed graph that has exactly one of the two edges

(u, v) and (v, u) for every pair {u, v} of distinct vertices. A tournament on three ver-

tices is called a triangle. A directed triangle is a cycle of length 3. A triangle that is not

directed is undirected; sometimes it is called a transitive triple. An out-neighbor of u

is a vertex v such that (u, v) is an edge. An in-neighbor of u is a vertex v such that

(v, u) is an edge. The out-degree of u, denoted d+(u), is the number of out-neighbors.

The in-degree d−(u) is the number of in-neighbors.

In a multigraph (directed or undirected), E(G) is a multiset, that is, it can have

multiple copies of each pair of vertices.

A hypergraph H consists of the vertex set V (H) and a family E(H) of subsets

of V (H), called hyperedges or just edges for simplicity. We sometimes adopt the con-

vention of identifying H with its set of edges. The size of H, denoted |H|, is the

number of edges of H. A hypergraph is k-uniform if all its edges have size k. With

this terminology, a graph is just a 2-uniform hypergraph. A cover (or transversal)
of H is a set of vertices that intersects all edges. The covering number τ(H) of H is

the minimum size of a cover ofH. A multihypergraph can have several copies of each

edge.
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A partially ordered set or a poset is a set P together with a reflexive, antisymmetric,

and transitive binary relation � on P . The elements x, y ∈ P are comparable if x � y

or y � x. We say that y covers x if x � z � y implies x = y or y = z. The cover graph of

a poset (P,�) is the (undirected) graph G with V (G) = P and an edge xy whenever

y covers x. Another undirected graph based on the poset is its comparability graph.

It has the same vertex set, but the edges are pairs xy such that x � y. An embedding
of (P,�1) into (Q,�2) is an injective function ψ : P → Q such that x �1 y if and

only if ψ(x) �2 ψ(y). If there is an embedding of (P,�1) into (Q,�2), we also say

that (P,�1) is a subposet of (Q,�2). The product of (P,�1) and (Q,�2) is the poset

(P ×Y,�), with (x1, y1) � (x2, y2) whenever x1 �1 x2 and y1 �2 y2. A chain is a poset

in which every two elements are comparable.

In several places, we use the “Big O notation” to describe the asymptotic behavior

of functions. Let f(x) and g(x) be two functions defined on (some subset of) real

numbers. We say that f(x) = O(g(x)) as x → ∞ if there is a constant c such that

|f(x)| ≤ c|g(x)| for x large enough. This is a common abuse of notation, since

technically O(g(x)) is a set of functions. If there are two constants c1 and c2 such that

c1|g(x)| ≤ |f(x)| ≤ c2|g(x)| for large enough x, we say that f(x) = Θ(g(x)) as x→∞.

We say that f(x) = o(g(x)) if limx→∞ f(x)/g(x) = 0.

In general, we write (x1, . . . , xk) for a k-tuple, and {x1, . . . , xk} for a set or a multi-

set. The exceptions are as follows: in Chapter 3 we drop the parentheses and commas

and use x1 . . . xk for a k-tuple in order to make the text easier to read. Also, as al-

ready mentioned, we adhere to the usual convention of writing uv for an edge of an

undirected graph. These never appear together in the text, so there is little danger of

confusion.

Let us finish with various miscellaneous pieces of notation. By deleting some rows

and columns of a matrix A, we get a submatrix of A. In the context of a probability

space, the probability measure will be denoted P, and E will be the expected value.

The letter N denotes the set of positive integers (in particular, N does not include 0),

and R is the set of real numbers. The characteristic vector of the subset A ⊆ [k] is the

k-tuple (x1, . . . , xk) with xi = 1 if i ∈ A and xi = 0 otherwise. The weight of such a

vector is the number of 1s in it. We will switch between sets and their characteristic

vectors as needed. The family of all subsets of X of size k is denoted
(
X
k

)
. The family

of all subsets of X is denoted 2X . For k ∈ N, [k] denotes the set {1, . . . , k}. If x is a

real number, dxe denotes the least integer y such that y ≥ x, and bxc is the greatest

10



integer y such that y ≤ x. The natural logarithm of x is denoted lnx. Additional

notation will be defined as needed.
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Chapter 2

List colorings with unequal list sizes

2.1 Choosability and balanced complete bipartite graphs

Many interesting real world problems can be modeled by some version of graph col-

oring. For example, in the most basic version of the frequency assignment problem,

we are given a set of transmitters and we want to assign a frequency to each of

them in such a way that if two transmitters interfere, they get different frequencies.

Asking whether this can be done with k frequencies is equivalent to solving the k-

colorability problem for a particular graph. If only some frequencies are available for

each transmitter, the problem corresponds to the list coloring problem for a certain

graph.

Definition 1. For a graph G, a list assignment is a function L : V (G) → 2N which

assigns a list of admissible colors to each vertex v. If L is a list assignment such that G

has a proper coloring c with c(v) ∈ L(v) for all vertices v, we say that G is L-colorable,

or that L is sufficient.

The list coloring problem is the following.

Given a graph G and a list assignment L on G, is G L-colorable?

For applications of graph coloring in frequency allocation, see for example [22, 62,

75].

The k-colorability problem with k ≥ 3 is a well-known NP-complete problem. It is

a simple special case of the list coloring problem, and hence the list coloring problem

is NP-complete even if all lists have size 3. Let us remark that this problem is NP-

complete even if various additional constraints are placed on the graph G and the list

assignment L (see [49]).

12



The following notion was defined by Vizing in [73], and later independently by

Erdős, Rubin and Taylor in [26].

Definition 2. A graph G is t-choosable if every list assignment L with |L(v)| ≥ t for

all vertices v ∈ V (G) is sufficient. The list chromatic number χ`(G) is the minimum t

such that G is t-choosable.

In the literature, the list chromatic number is sometimes called the choosability or

the choice number.
While the main focus of this section is the more general notion of sum choice

number, some techniques that have been developed while studying list chromatic

number will be useful to us in the sum choice setting as well. In this section we will

review the most important of these ideas.

The concept of choosability has been the focus of considerable attention and re-

search in the last thirty years. In the seminal paper [26] Erdős, Rubin and Taylor

characterized all 2-choosable graphs and provided good bounds for list chromatic

number of balanced bipartite graphs. Our results on sum choice numbers of bipartite

graphs use some of these ideas.

First, let us present a well-known example of an insufficient list assignment ([26]).

Figure 2.1 shows this construction for t = 3.

Lemma 3 ([26]). Fix t ∈ N and let n =
(

2t−1
t

)
. If L is the assignment of t-element

subsets of [2t − 1] to the vertices of Kn,n satisfying the condition that any two vertices
that belong to the same part receive different sets, then Kn,n is not L-colorable.

Proof. Suppose to the contrary that there exists a proper coloring c with c(v) ∈ L(v)

for all vertices v. Let H be the hypergraph with the vertex set V (H) = ∪v∈V (Kn,n)L(v)

and the edge set E(H) = {L(v) : v ∈ V (Kn,n)}. The set {c(v) : v ∈ V (Kn,n)} is a

cover ofH. It is easy to check that τ(H) = t, so the coloring uses at least t colors. But

then there is at least one color that was used for both parts of Kn,n, a contradiction.2

Corollary 4. χ`(Kn,n) > 1
2

log2 n+ 1
4

log2 log2 n− 3
4
.

Proof. Let t be the largest integer such that
(

2t−1
t

)
≤ n. By Lemma 3, χ`(Kn,n) > t.

We have t > 1
2

log n+ 1
4

log log n− 3
4
, because otherwise, using Stirling approximation
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{1
, 2
, 3
}

{1
, 2
, 4
}

{1
, 2
, 5
}

{1
, 3
, 4
}

{1
, 3
, 5
}

{1
, 4
, 5
}

{2
, 3
, 4
}

{2
, 3
, 5
}

{2
, 4
, 5
}

{3
, 4
, 5
}

{1, 2, 3}

{1, 2, 4}

{1, 2, 5}

{1, 3, 4}

{1, 3, 5}

{1, 4, 5}

{2, 3, 4}

{2, 3, 5}

{2, 4, 5}

{3, 4, 5}

Figure 2.1: An insufficient list assignment for K10,10.

and the fact that 4t/
√
t is increasing for t ≥ 1,(

2(t+ 1)− 1

t+ 1

)
≤ 4

(
2t− 1

t

)
≤ 2

(
2t

t

)
≤ 2

4t√
t
≤ 2

n2−3/2
√

log2 n√
1
2

log2 n+ 1
4

log2 log2 n− 3
4

≤ n,

and t was not the largest integer satisfying the inequality. 2

An upper bound for χ`(Kn,n) also appeared in [26].

Theorem 5 ([26]). χ`(Kn,m) ≤ dlog2(n+m)e.

Proof. Let X and Y be the two parts of the bipartite graph. Consider a list assign-

ment L with L(v) = k for all vertices v ∈ V (Kn,m). Construct a random subset T

of ∪v∈V (Kn,m)L(v) by including each color independently with probability 1/2. Let C

be the event that it is not possible to color X with colors from T and Y with the

remaining colors. We have

P(C) ≤ (n+m)
1

2k
. (2.1)

If k > log2(n + m), then the quantity in (2.1) is strictly less than 1, and hence

there exists a choice of T such that we can color X with colors in T and Y with

the remaining colors. 2
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The exact value of χ`(Kn,n) is unknown for general n. It was already observed

by Erdős, Rubin and Taylor in [26] that this problem has a strong connection to

the problem of determining the least cardinality Mk of a k-uniform hypergraph H
that does not have property B. We say that a hypergraph has property B if it is 2-

colorable, i.e., there is a set T ⊆ V (H) that intersects all edges of H but does not

contain any edge of H. In particular, if Nk is the minimum number of vertices of a

complete bipartite graph that is not k-choosable, then

Mk ≤ Nk ≤ 2Mk.

To prove the first inequality, consider the smallest complete bipartite graph G that

is not k-choosable, and a list assignment L with lists of size k such that G is not

L-colorable. These lists form a k-uniform hypergraph that does not have property B.

To prove the upper bound, take a k-uniform hypergraph that does not have property

B, and assign the hyperedges as the lists to both parts of KMk,Mk
. The graph KMk,Mk

is not L-colorable for this L.

The problem of determining Mk is unsolved and is generally regarded as hard.

If G is L-colorable for every list assignment L with |L(v)| ≥ t, then in particular

this is true for the list assignment L defined as L(v) = {1, . . . , t} for all v. In other

words,

χ(G) ≤ χ`(G) (2.2)

holds for all graphs G.

Since χ(Kn,n) = 2 for all n, Corollary 4 provides evidence that χ`(G) and χ(G)

can be arbitrarily far apart. Surprisingly, no such examples are known for edge-

colorings. We can define the edge chromatic number χ′(G) and the list edge chromatic
number χ′l(G) analogously to ordinary chromatic number and list chromatic number,

as χ′(G) = χ(L(G)) and χ′l(G) = χ`(L(G)), where L(G) is the line graph of G. Let

us close this section by mentioning one of the most important conjectures concern-

ing choosability. This conjecture is of unclear origin; for a discussion of its history,

see [41].

Conjecture 6 (List coloring conjecture). For all G, χ′l(G) = χ′(G).
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2.2 Average list sizes and planar graphs

It is natural to consider a generalization of list coloring where the sizes of the lists

are prescribed by a non-constant function.

Definition 7. Consider a function f : V (G) → N. An f -assignment is a list as-

signment L with |L(v)| = f(v) for all v ∈ V (G). The graph G is f -choosable if all

f -assignments are sufficient. If G is f -choosable, we say that the function f is suffi-
cient.

A special case of this concept is already discussed in [26]. Let φ(G,H) be the set of

all graphs that can be obtained by selecting a vertex from G and a vertex from H and

identifying them. Let D be the minimal family of graphs that contains all cliques, all

odd cycles, and with each pair G,H it contains all members of φ(G,H) as well.

Theorem 8 ([26]). For a graph G, define f(v) = deg(v) for all vertices v. This f is
sufficient if and only if G does not belong to D.

This characterization of f -choosable graphs for this special f yields the following

analogue of Brooks’ Theorem [13] for list chromatic number.

Theorem 9 ([26]). If G is a graph with maximum degree ∆, then χ`(G) ≤ ∆, unless
G has a component K∆+1, or ∆ = 2 and G has an odd cycle as a component.

For a fixed ordering σ of the vertices of G, let d̂(v) be the number of vertices

adjacent to v and preceding v in σ.

Proposition 10. Let σ be an ordering of the vertices of G, and define f(v) = d̂(v) + 1

with respect to σ. Such f is sufficient.

Proof. Let L be an f -assignment. We color the vertices successively in the order

specified by σ. When the time comes to color v, it has d̂(v) neighbors that are already

colored. Since |L(v)| = d̂(v) + 1, we still have an available color to assign to v. 2

Proof of Theorem 9. Without loss of generality, G is connected. If G is ∆-regular, then

either it is f -choosable and we are done, or it is in D. The only regular graphs in D

are cliques and odd cycles.

16



If G has a vertex v with deg(v) < ∆, define Ai for all i ≥ 0 to be the set of

vertices in distance i from v (and in particular A0 = {v}). Fix an ordering σ such that

σ(u) < σ(v) whenever u ∈ Ai and v ∈ Aj with i > j. Each vertex other than v has a

neighbor succeeding it in σ. The result is then a consequence of Proposition 10. 2

We will present two further examples of sufficient functions. As our first example,

consider the complete graphKn with vertices v1, . . . , vn, and the function f(vi) = i for

all i. Consider an arbitrary f -assignment. Assign colors to v1, v2, . . . , vn successively.

At step i, i − 1 vertices already have colors, but since |L(vi)| = i, it is possible to

assign a color to vi as well. This f is therefore sufficient.

The second example concerns planar graphs. It is a well-known fact, proved by

Thomassen in [68], that

χ`(P ) ≤ 5 (2.3)

for every planar graph P , and this is best possible ([74]).

But in fact, Thomassen’s pretty argument for (2.3) proves a stronger statement.

Theorem 11 ([68]). Let P be an n-vertex planar graph with external vertices v1, . . . , vt.
If L is a list assignment with

|L(v)| =


1 for v = v1,

1 for v = v2,

3 for v = v3, . . . , vt,

5 otherwise

(2.4)

and L(v1) 6= L(v2), then L is sufficient.

It follows that the function f defined as

f(v) =


1 for v = v1,

2 for v = v2,

3 for v = v3, . . . , vt,

5 otherwise

(2.5)

is sufficient, for a planar graph with external vertices v1, . . . , vt.
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2.3 Sum choice number, balanced complete bipartite
graphs

In view of previous section, the following definition is natural.

Definition 12 ([39]). The sum choice number of G, denoted χsc(G), is the least k for

which there exists a sufficient f with
∑

v∈V (G) f(v) = k.

Sum choice number was introduced in [39] by Isaak, who proved that if G is the

line-graph of K2,q, then χsc(G) = q2 + d5q/3e. Berliner, Bostelmann, Brualdi, and

Deaett [10] determined the sum choice number of any graph that can be obtained as

a union of two graphs sharing a single vertex, in terms of the sum choice numbers

of the two graphs. They also found the value of the parameter for K2,n. Heinold

in [36] and [37] determined the sum choice number of Petersen graph, of P22Pn, and

of K3,n. Isaak in [40] concentrated on graphs whose every block is a complete graph

and proved that the sum choice number equals |V (G)|+ |E(G)| for these graphs.

We will first provide several examples and observations.

Thomassen’s Theorem, and in particular the observation that the function (2.5) is

sufficient, implies that for planar graphs P , we have

χsc(P ) ≤ 5n− 9. (2.6)

Our second example is the clique Kn, with V (Kn) = {v1, . . . , vn}. We already

showed that the function f defined as f(vi) = i is sufficient, providing an upper

bound on the sum choice number. We will prove a matching lower bound, showing

χsc(Kn) =
n(n+ 1)

2
. (2.7)

To prove that χsc(G) ≥ k for a given k, we need to show that no integer-valued

function f with
∑

v∈V (G) < k is sufficient. Consider an arbitrary integer-valued func-

tion f with
∑

v∈V (Kn) f(v) < n(n+1)
2

. Assume without loss of generality that we have

f(v1) ≤ f(v2) ≤ · · · ≤ f(vn) for the vertices of Kn. Now construct a list assignment L

by letting L(v) = {1, 2, . . . , f(v)} for every vertex v. Let i be the least index such

that f(vi) < i. We have then i − 1 colors available to color v1, . . . , vi, so Kn is not

L-colorable.
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Next, let us mention two upper bounds for χsc. The first one is an obvious conse-

quence of the definition of sum choice number.

Proposition 13. χsc(G) ≤ |V (G)| · χ`(G).

As seen in (2.6) and (2.7), planar graphs and cliques provide examples of graphs

for which this bound is far from the truth, and provide motivation for our interest

in this parameter. The average list size 1
n

∑
f(v) of a sufficient function f can drop

significantly if the function is allowed to be non-constant.

Proposition 14 ([40, 26]). χsc(G) ≤ |V (G)|+ |E(G)|.

Proof. We have already shown in Proposition 10 that the function f(v) = d̂(v) + 1 is

sufficient, for any ordering of the vertices. For this f , we have
∑
f(v) = |V (G)| +

|E(G)|. 2

The papers [10] and [40] investigated graphs for which this bound holds with

equality.

As an easy consequence, we get χsc(P ) ≤ 4n − 6 for every planar graph. But in

fact, we can get a slight improvement.

Theorem 15. For every n-vertex planar graph P , there exists a sufficient function f :

V (P )→ N such that
∑
f(v) = 4n− 6 and max f(v) ≤ 6. 2

Proof. Using Proposition 10, every ordering of V (P ) yields an upper bound on χsc(P ).

Since every planar graph has a vertex of degree at most 5, it is possible to order the

vertices so that d̂(v) ≤ 5 for all v. 2

Problem 16. Determine χsc for planar graphs.

In particular, Thomassen’s Theorem shows that for every planar graph there exists

a sufficient function f with f(v) ≤ 5 for all v, with average list size slightly less than 5.

On the other hand, in Theorem 15 we show that there exists a sufficient function with

average list size less than 4, but this improvement comes at the expense of raising

the maximum list size to 6. Is it possible to combine the two? An affirmative answer

to the following problem would be a strengthening of Thomassen’s Theorem.
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Problem 17. Does there exist a sufficient function f for every planar graph P , such that
f(v) ≤ 5 for all v ∈ V (P ) and

∑
f(v) ≤ 4n?

It seems that we cannot hope for any result better than this. There are planar

graphs with list chromatic number 5, so the first condition cannot be improved. As

for the second condition, chromatic number of planar graphs can be as high as 4, so

it might be too much to require a smaller average list size.

We will state here explicitly, for future reference, two observations about mono-

tonicity of sufficient functions and of χsc.

Lemma 18. Let G, H be graphs, and let f, g be integer-valued functions on V (G).

(i) If G is a subgraph of H, then χsc(G) ≤ χsc(H).

(ii) If f(v) ≤ g(v) for all v, and g is insufficient, then so is f .

Now, let us anticipate the next section and turn our attention to complete bipartite

graphs. Intuitively, the additional freedom of allowing a non-constant f should not

help too much if the parts have the same size, i.e., χsc(Kn,n) is likely close to the

upper bound from Proposition 13. The following result supports our intuition.

Theorem 19.
1

2
n log n+

2

3
n < χsc(Kn,n) ≤ 2n(dlog2 ne+ 1).

Proof. The upper bound is a direct consequence of Proposition 13 together with The-

orem 5.

To prove the lower bound, for every integer-valued function f with
∑
f(v) ≤

1
2
n log n + 2

3
n we present an f -assignment L such that Kn,n is not L-colorable. Fix

such function f . Let k0 = blog4 nc+ 1. Let X and Y be the two parts of Kn,n, and let

ak and bk respectively be the number of vertices in X and Y with list sizes at most k.

Note that
(

2k−1
k

)
≤ 4k−1. If, for some k ≤ k0, X and Y each have at least 4k−1

vertices v with f(v) ≤ k, then we can construct a list assignment as in Lemma 3, with

the help of Lemma 18. If f is sufficient, then

min{ak, bk} ≤ 4k−1 − 1 (2.8)

for every k ≤ k0. We have
∑
f(v) = n + (n − a1) + (n − a2) + · · · + (n − ak0) + n +

(n − b1) + (n − b2) + · · · + (n − bk0). Under the conditions (2.8), this is minimized if
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ak = 4k−1 − 1 and bk = n holds for all k, i.e., if f(v) = 1 for v ∈ Y . We then have∑
f(v) ≥ n+ n+ (n− 40 + 1) + (n− 42 + 1) + · · ·+ (n− 4k0−1 + 1)

≥ 2n+ k0(n+ 1)−
k0−1∑
k=0

4k

>
1

2
n log2 n+

2

3
n.

This is a contradiction. 2

On the other hand, χ`(Kn,n) = Θ(log n).

Theorem 20 ([26]). blog2 n− 2 log2 log2 nc − 1 ≤ χ`(Kn,n) ≤ dlog2 ne+ 1.

Proof. Let Ck be the minimum n such that χ`(Kn,n) > k. Recalling thatMk is the mini-

mum size of a k-uniform hypergraph without property B, we have Mk ≤ 2Ck ≤ 2Mk.

Also, it is known (see [26]) that 2k−1 < Mk < k22k+1. Hence if n ≥ k22k+1, then

χ`(Kn,n) ≥ k and the lower bound follows easily. 2

The sum choice number of a balanced complete bipartite graph divided by 2n is

therefore within a constant multiple of the list chromatic number of the same graph.

Theorem 19 shows that this constant is at most 4. It is obvious from the proof that

this is not best possible, but even this rough estimate suffices to demonstrate that

χsc normalized by the number of vertices does not differ significantly from χ` for

balanced complete bipartite graphs.

As we will see in the next sections, the situation is radically different for unbal-

anced complete bipartite graphs. If q is sufficiently large with respect to a, then

χ`(Ka,q) > a. To see that, assign disjoint a-element sets to the part of size a. The

Cartesian product of these sets has aa members. Let these be the lists assigned to

the q-element part. No matter what labels we choose for the a-element part, there

will always be a vertex in the larger part that we cannot color. On the other hand,

Theorem 21 in Section 2.4 shows that for q →∞ and a fixed, χsc(Ka,q)/|V (Ka,q)| ∼ 2.
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2.4 Unlike χ`, χsc does not grow with average degree

As we already mentioned, Erdős, Rubin and Taylor showed in [26] that

χ`(Kq,q) = Θ(log q). (2.9)

If one of the parts is substantially smaller than the other one, then allowing dif-

ferent list sizes again results in smaller average lists. Theorem 21 is one of the main

theorems that we prove in this chapter.

Theorem 21. There exist constants c1 and c2 such that for all a ≥ 2 and q ≥ 4a2 log a,

2q + c1a
√
q log a ≤ χsc(Ka,q) ≤ 2q + c2a

√
q log a.

We have seen that in some cases, the list chromatic number behaves very similarly

to chromatic number (Brooks’ Theorem), or is at least conjectured to (list coloring

conjecture). In some other contexts, however, the two parameters behave very dif-

ferently. An example of this is the behavior of the two parameters with respect to the

average degree. It is easy to construct a sequence of graphs Gi for which the average

degree degave(Gi) approaches infinity, but χ(Gi) is bounded by a constant – just take

the complete bipartite graphs Kn,n. On the other hand, Alon has shown in [5] that

χ` depends heavily on the average degree.

Theorem 22 ([5]). If G has average degree d, then χ`(G) ≥ (1
2
− o(1)) log2 d.

When we relax the definition of choosability to allow different list sizes, a natural

question that immediately arises in the light of the above is, how does this relaxation

affect the behavior of the parameter with respect to the average degree? Does an

analogue of Alon’s theorem still hold? Or can we construct a sequence of graphs

with average degree growing and χsc bounded by a constant?

One of the most interesting consequences of our Theorem 21 is that it answers this

question. If different list sizes are allowed, the conclusion of Theorem 22 is no longer

true. The sum choice number depends on the structure of the graph much more than

the list chromatic number, whose value can be estimated solely based on the value

of a global parameter such as average degree. In this respect, sum choice number

resembles chromatic number more than list chromatic number.
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With q tending to infinity, the average degree of Ka,q approaches 2a. We obtain

lim
a→∞, q>>a2 log a

|E(Ka,q)|
a+ q

=∞, lim
a→∞, q>>a2 log a

χsc(Ka,q)

a+ q
= 2. (2.10)

Using Theorem 21, we can therefore provide an infinite sequence of graphs with

average degree approaching infinity and sum choice number bounded by a constant,

in complete analogy with the situation concerning chromatic number.

For a = 2 and a = 3, the value of Ka,q was determined by Berliner, Bostelmann,

Brualdi, and Deaett in [10], and by Heinold in [37].

Theorem 23 ([10]). χsc(K2,q) = 2q + 1 + b
√

4q + 1c.

Theorem 24 ([37]). χsc(K3,q) = 2q + 1 + b
√

12q + 4c.

Our main result (Theorem 21) extends Theorems 23 and 24 to Ka,q with arbi-

trary a. Let us remark here that we need the full generality of Theorem 21 to draw

the conclusions about the behavior of χsc(G) with respect to average degree; Theo-

rems 23 and 24 do not suffice.

* * *

Throughout this chapter, the two parts of the complete bipartite graph Ka,q will be

called A and Q, with |A| = a and |Q| = q.

2.5 Upper bound, there are sufficient short lists

A variation of the proof of Theorem 5 yields a good upper bound on χsc(Ka,q).

Theorem 25. For every constant c > 1, there is an a0 such that if q > a > a0, then

χsc(Ka,q) ≤ 2q + ca
√
q ln a.

Proof. We present a function f with
∑

v∈A∪Q f(v) ≥ 2q + ca
√
q ln a such that every

f -assignment is sufficient.

Define f as

f(v) =

{
r for v ∈ A;

2 for v ∈ Q

23



where r will be defined later.

Fix a list assignment L with L(v) = f(v) for all v. Construct a random subset T

of ∪v∈A∪QL(v) by including each color independently with probability p. We will

attempt to color the vertices of A with the colors in T and the vertices of Q with the

remaining colors. Let C be the event that this is not possible. We have

P(C) ≤ a(1− p)r + qp2. (2.11)

If the quantity on the right side of (2.11) is less than 1, then in particular p < 1/
√
q.

Let α(q) be a sequence with α(q) < 1 for all q, and set

p =
α(q)
√
q
.

Using that 1− x ≤ exp(−x) for all x, we get

P(C) ≤ a · exp

(
−rα(q)
√
q

)
+ (α(q))2.

For this to be less than 1, we need

r >
√
q

(
ln a

α(q)
− ln(1− α(q)2)

α(q)

)
. (2.12)

For a large enough, we can find α(q) (sufficiently close to 1) so that the right side

of (2.12) is bounded from above by c
√
q log a. Therefore, if a is large enough and

r > c
√
q ln a, then P(C) < 1 and there exists a choice of T such that we can color A

with colors in T and Q with the remaining colors. 2

However, it is clear that to improve this bound further, additional ideas are needed.

Using a more complicated argument, we can improve the ln a in the second term to√
ln a.

Theorem 26. If a, q ∈ N with q > a > 3, then

χsc(Ka,q) ≤ 2q + ad
√

32q(1 + ln a)e.
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{2, 3} {1, 5}{3, 4}{1, 2}

{1, 2, 4}{2, 3, 4}{1, 3, 4}

Q

A

13

4

2

5

G

H

Figure 2.2: An example of a bipartite graph with a list assignment (left) and the
corresponding graph G and hypergraph H (right). The circled vertices in the right
part of the picture show a possible choice of the set T of colors used for coloring part
A of the bipartite graph.

Proof. We again present a sufficient function f

f(v) =

{
r for v ∈ A;

2 for v ∈ Q,

where r will be defined later in (2.15), such that
∑

v∈A∪Q f(v) ≥ 2q+a
√

32q(1 + ln a).

Let L be an arbitrary f -assignment, i.e., |L(v)| = f(v) for all v. Let S be the union

of all the lists, S =
⋃
v∈A∪Q L(v). The list assignment L yields a (multi)hypergraph

and a multigraph with the same vertex set S and with edge sets LA = {L(u) : u ∈ A}
and LQ = {L(v) : v ∈ Q}, respectively. The sufficiency of L means that one can find

a set T ⊂ S intersecting all hyperedges of LA such that S \ T intersects all edges of

LQ, so T is an independent set in the graph LQ. (See Figure 2.2 for an example.) We

can color each vertex u with a color c(u) such that

c(u) ∈ L(u) ∩ T for u ∈ A and c(v) ∈ L(v) ∩ (S \ T ) for v ∈ Q.

We are going to construct such T by a two-step random process.

Let us pick, randomly and independently, each element of S with probability p. Let

B be the random set of all elements picked. Define a random variable Xu for each

u ∈ A by Xu = |L(u) ∩B|, and the random variable Y by

Y = |{v ∈ Q : L(v) ⊆ B}|,
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so Y is the number of edges of LQ spanned byB. If we remove an element `(v) ∈ L(v)

for each edge of LQ spanned by B, the remaining set T ⊂ B is certainly independent

in LQ. If Y < Xu for each u ∈ A, then T intersects all L(u) ∈ LA and we are done.

The expected value of Y is p2q, so the Markov inequality gives

P(Y < 2p2q) >
1

2
. (2.13)

The expected value of Xu is pr, so the Chernoff inequality gives

P(Xu < EXu − t) < e−t
2/2rp,

for any t > 0. Hence

P(Xu ≥ pr − t for all u ∈ A) ≥ 1− ae−t2/2rp, (2.14)

and this again exceeds 1/2 for t2 > 2rp ln(2a). The sum of the probabilities in (2.13)

and (2.14) is larger than 1, so there is an appropriate choice of B (and then T ) if

t2 = 2rp(1 + ln a) and pr − t > 2p2q. This is true for

p =

√
2(1 + ln a)

q
and r ≥ 4pq =

√
32(1 + ln a)q. (2.15)

2

2.6 Lower bound, much shorter lists are not sufficient

To prove that χsc(G) ≥ k for a particular k, we need to show that for every f with∑
v∈G f(v) = k, there exists an insufficient f -assignment.

We will first show how to construct such a list assignment for a very special f .

Then we will consider a general f and show that we can apply this construction to a

subgraph of Ka,q, provided that
∑
f(v) is sufficiently small.

Lemma 27. Let t ≥ 2 and l ≥ 1. For a = 2t and q = t`2, there exists a list assignment L
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Figure 2.3: An example of a hypergraph H and a graph G that correspond to an
insufficient list assignment for Ka,q with a = 23 and q = 3 · 52. This list assignment
uses 6 · 5 colors. Only two hyperedges out of 8 are shown in the picture.

with

L(v) =

{
2 for v ∈ Q;

t` for v ∈ A.

such that Ka,q is not L-colorable.

Proof. Take the complete t-partite t-uniform hypergraph with parts of size 2, i.e., the

family of all sets A ⊆ {u1, v1, u2, v2, . . . , ut, vt} that contain exactly one of {ui, vi} for

all i. Replace the vertices ui, vi with disjoint vertex sets Ui, Vi of size `. Let H be

the resulting tl-uniform hypergraph. That is, V (H) =
⋃t
i=1(Ui ∪ Vi) and E(H) =

{(
⋃
i∈I Ui) ∪ (

⋃
j 6∈I Vj) : I ⊆ {1, . . . , t}}. The covering number of this hypergraph is

τ(H) = t+ 1.

Define a graph G on the vertex set
⋃t
i=1(Ui ∪ Vi) by setting E(G) =

⋃t
i=1(Ui × Vi).

Every minimum cover of H contains at most one vertex from each Ui and each Vi. It

has t+ 1 vertices, so by the pigeonhole principle, it contains both endpoints of some

edge in G. See Figure 2.3 for an example of H and G.

Define the lists of the vertices v ∈ A to be the sets in E(H) and the two element sets

in E(G) to be the lists of the vertices v ∈ Q. The number of edges of G is t · `2 = q, so

this can be done. We have shown in the previous paragraph that this list assignment

is not sufficient. 2
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Note that with this choice of a and q, we have |L(v)| ≥
√
q log2 a for v ∈ A.

Theorem 28. If a ≥ 2 and q > 4a2 ln a, then

χsc(Ka,q) ≥ 2q + 0.061a
√
q ln a.

Proof. Let s be such that
∑

v∈A∪Q f(v) = 2q + as. We will prove that, as long as

s ≤ 0.061
√
q ln a, the function f is not sufficient. Suppose to the contrary that every

f -assignment is sufficient.

Let q1, q2, and q3 be the numbers of vertices v ∈ Q with f(v) = 1, f(v) = 2, and

f(v) ≥ 3 respectively. Since f(u) ≥ q1 for each u ∈ A (otherwise f is not sufficient),

2q + as =
∑

v∈A∪Q

f(v) ≥ aq1 + (q1 + 2q2 + 3q3) ≥ 2q + q1 + q3.

It follows that q1 + q3 ≤ as and Q has at least q − as vertices with lists of size 2.

Let q∗ = q2 and let a∗ be a power of 2 as large as possible such that a∗ ≤ a
2
.

If there are at least a∗ vertices u ∈ Awith f(u) ≤
√
q∗ log2 a

∗, we can use Lemma 27

together with both parts of Lemma 18 to construct an insufficient list assignment.

If this is not true, then A has more than a
2

vertices with lists of sizes greater than√
(q − as) log2 a

∗. If q satisfies the hypothesis of the theorem and s ≤ 0.061
√
q ln a,

then ∑
v∈A∪Q

f(v) ≥ 1

2
a ·
√

(q − as) log2 a
∗ + 2(q − as) > 2q + as. (2.16)

To get the last inequality for a ≥ 5, we observe that a∗ ≥ a
4
. The cases a = 2 and

a = 3 follow from Theorems 23 and 24, and the case a = 4 is not difficult to handle

separately.

Equation (2.16) contradicts the assumptions. 2

The proof of Theorem 28 is fairly intuitive and it provides a lower bound which

differs from our upper bound only in the value of the multiplicative constant appear-

ing in the second term. The value 0.061 works for all a ≥ 2, even if q is relatively

not too large. But even for q very large with respect to a, and a itself approaching

infinity, the constant that we obtain in the above proof does not exceed 1/2. This

value can be improved significantly by the use of a randomized construction in place
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of Theorem 27. This proof is interesting in its own right and substantially different

from the proof of Theorem 28, so we will present it here as well, albeit with less

detail.

First let us make two technical observations. They can be proved easily by algebraic

manipulation; the proof is omitted here. We follow the convention that
(
n
k

)
is defined

to equal 0 for n < k.

If 2 + c ≤ d ≤ 2t, then (
t

c+1

)(
2t
c+1

) +

(
t

d−1

)(
2t
d−1

) < (
t
c

)(
2t
c

) +

(
t
d

)(
2t
d

) . (2.17)

Also, if c < d ≤ t, then (
t
c

)(
2t
c

) > (
t
d

)(
2t
d

) . (2.18)

Theorem 29. For every sufficiently large a there exists a constant q0(a) such that if
q > q0(a), then χsc(Ka,q) ≥ 2q + 0.849a

√
q ln a.

Proof. Let f(v) be the given list sizes for v ∈ A ∪ Q and suppose first that f(v) = 2

for all v ∈ Q. We seek an insufficient list assignment L with the appropriate list sizes.

We will use 2t colors, where t will be determined later. For the sake of readability,

we henceforth omit most floors and ceilings. If a and q are very large, taking floors

or ceilings changes the quantities very little in all of these cases. Omitting them will

greatly simplify our computations, while not making any difference in the results.

First, let us remove the influence of q by setting si = f(vi) ·
√
t/q. Using random

choice, we construct a family A = {Ai : i = 1, . . . , a} of subsets of the vertex set

{x1, y1, x2, y2, . . . , xt, yt} with |Ai| = si, such that τ(A) > t holds for the covering

number of A. Replace the vertices xi, yi by disjoint sets Xi, Yi of size
√
q/t. The

resulting sets of size si ·
√
q/t = f(vi) will be the color sets assigned to the vertices

of A. Place complete bipartite graphs between Xi and Yi for all i. Altogether, these

have t · (
√
q/t)2 = q edges. Use the two-element sets corresponding to these edges as

the lists for the vertices of Q. Since the covering number of the hypergraph is more

than t, this list assignment is not sufficient.

Let s = 1
a

∑
vi∈A si. We need to prove that if s is small enough, then there exists an

integer t such that the family A with properties described above exists. Let B ⊆ A
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be the set of vertices with si ≤ 2t, and let b = |B|. For every vi ∈ B, let Ai be a

set chosen randomly, uniformly from
(

[2t]
si

)
(the collection of subsets of [2t] of size si).

Let A be the resulting family. Assign lists arbitrarily to the vertices of A \ B; these

vertices do not play any role in our construction.

P(τ(A) ≤ t) ≤
∑

T⊆[2t],|T |=t

P(for all i, Ai ∩ T 6= ∅)

=

(
2t

t

)
·
∏
vi∈B

(
1−

(
t
si

)(
2t
si

))

≤
(

2t

t

)
· exp

(
−
∑
vi∈B

(
t
si

)(
2t
si

)) . (2.19)

In the last line, we used the fact that (1 − x) ≤ exp(−x) for all x. If some si are not

equal to b(
∑

vi∈B si)/bc or d(
∑

vi∈B si)/be, then find si and sj such that sj ≥ si + 2.

Replace si with si + 1 and sj with sj − 1. By (2.17), the sum in (2.19) decreases.

Repeat until si ∈ {b(
∑

vi∈B si)/bc, d(
∑

vi∈B si)/be} for all i.

For the next step, we want t to satisfy t ≥ s. For this, it is sufficient for t to satisfy

t ≥ 1

q

(
1

a

∑
vi∈A

f(vi)

)2

. (2.20)

Note that also s ≥ 1
b

∑
vi∈B f(vi). We can use (2.18) with c = b(

∑
vi∈B si)/bc or

c = d(
∑

vi∈B si)/be and d = t to get

∑
vi∈B

(
t
si

)(
2t
si

) ≥ b(
2t
t

) .
We have

P(τ(A) ≤ t) ≤ exp

(
t · 2 ln 2− b(

2t
t

)) . (2.21)

This is less than 1 if t · 2 ln 2 . ln b− ln ln b. It is easy to observe that b ≥ a/2. Hence,

in order for (2.21) to be less than 1, it suffices to have

t ≤ ln a

2 ln 2
− o(ln a). (2.22)
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Combining (2.20) with (2.22), if a is large enough, we get

∑
vi∈A

f(vi) ≤
√
q ln a

2 ln 2
< 0.849

√
q ln a.

Whenever this is true (and a is large enough), there is a t such that the random choice

described above results in an insufficient list assignment, with nonzero probability.

With q vertices in Q that all have list sizes equal to 2, there exists the desired list

assignment with list sizes f(vi) for vi ∈ A, as long as
∑

vi∈A f(vi) ≤ 0.849
√
q ln a.

Now let us consider a general list size function f , where we do not necessarily have

f(v) = 2 for all v ∈ Q. The above proof shows that, as long as there are at least q2

vertices in Q with list sizes equal to 2, then whenever the average list size on A is at

most 0.849
√
q2 ln a, we can find an insufficient list assignment.

For an arbitrary list assignment f , we have proved in the proof of Theorem 28 that

the number q2 of vertices v ∈ Q with f(v) = 2 is at least q−o(q). A short computation

suffices to show that, by making a and q large enough, we can get arbitrarily close to

the constant 0.849 in this general case as well. 2

Let us remark that if we choose the constants in the proof of Theorem 26 more

carefully, we can improve the constant
√

32 in the upper bound to approximately 3.67.

2.7 For fixed a, the limit as q →∞ exists

We have proved that (χsc(Ka,q) − 2q)/
√
q is bounded from above and below by con-

stants. Now we show that in fact the limit exists, as q tends to∞.

Theorem 30. For fixed a, the limit limq→∞
χsc(Ka,q)−2q√

q
exists.

First we consider a simpler problem and define χsc2(Ka,q) to be the least k for

which there exists a a sufficient f with
∑

A∪Q f(v) = k and with f(v) = 2 for all

v ∈ Q. Obviously χsc2(Ka,q) ≥ χsc(Ka,q). We will identify functions f with f(v) = 2

for v ∈ Q with vectors f = (f1, . . . , fa).

Theorem 31. For fixed a, the limit limq→∞
χsc2(Ka,q)−2q√

q
exists.
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If f is not sufficient and f(v) = 2 for all v ∈ Q, then there exists an insufficient

f -assignment L such that Ka,q is not L-colorable. We will identify such L with the

pair (L, G), where L is a multihypergraph L with edges Li satisfying |Li| = fi for

1 ≤ i ≤ a, and a G is a multigraph on V (L) with at most q edges, such that no

transversal of L is an independent set in G.

For I ⊆ [a], define XI = ∩i∈ILi. An insufficient list assignment is symmetric if,

for all pairs I 6= J , the bipartite subgraph of G induced by XI and XJ is either

empty or complete, and for each I, XI induces the empty graph. Using the following

lemma, we can without loss of generality assume that an insufficient list assignment

is symmetric.

Lemma 32. Fix a, f and q. A function f is insufficient if and only if there exists a
symmetric insufficient list assignment.

Proof. Suppose that L is an insufficient list assignment, and let L and G be the corre-

sponding hypergraph and graph. If u and v belong to the same XI , then no minimal

transversal of L contains both of them. We can therefore delete all edges induced

by XI .

Now suppose that u, v ∈ XI and |N(u)| ≤ |N(v)|. Replace the neighborhood of v by

the neighborhood of u. It is still true that every transversal of L induces an edge of G.

Repeated application of this procedure eventually produces a symmetric insufficient

f -assignment L such that Ka,q is not L-colorable. 2

Proof of Theorem 31. Consider a symmetric f -assignment L. Let L, G and XI (for

I ⊆ [a]) be as before. Let xI = |XI | and let x = (x∅, x{1}, . . . ) be the vector of the xI ’s,

ordered in some way. Replace each XI with a vertex vI . Let R be the reduced graph
of the symmetric list assignment, i.e., the graph with V (R) = {vI : xI 6= 0} and

whose edges correspond to the complete bipartite subgraphs of G. Similarly, the

hypergraph L turns into the reduced hypergraph on the same vertex set, V (R). Note

that every cover of the reduced hypergraph induces an edge of R. We will call such

graphs R persistent. The vector x satisfies
∑

IJ∈E(R) xIxJ ≤ q, and moreover xI = 0

whenever vI 6∈ V (R). The set AqR of all such x is the body bounded by a quadric

surface which depends on R and q.

Define the linear map ϕ : R2[a] → Ra by ϕ(x) = (f1, . . . , fa) = f where fi =
∑

i∈I xI .

The function f is insufficient for this q if and only if f is the image of some integer

point x that is in AqR for some persistent R.
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If there exists an insufficient f -assignment L for every integer vector f such that∑
fi = k, then we have χsc2(Ka,q) − 2q > k. We are therefore looking for the maxi-

mum k such that every integer point on the hyperplane
∑
fi = k is the image (under

ϕ) of some integer point in
⋃
AqR, where the union is taken over all persistent R.

Let us normalize everything by
√
q. For every persistent R, define

AR = {x :
∑

IJ∈E(R)

xIxJ ≤ 1, and xI = 0 for vI 6∈ V (R)} and BR = ϕ(AR).

For every R we now have only one quadric surface, independent of q. We say that a

vector v is a q-grid point if
√
q · v is an integer point.

For every q, define kq to be the maximum k such that
√
q · k ∈ N and every q-grid

point on the hyperplane
∑
fi = k is the image of some q-grid point in

⋃
AR. If this

is true, then the same is true for q-grid points with
∑
fi ≤ k, as well, by the second

part of Lemma 18. Hence kq is equal to the maximum k with
√
q · k ∈ N such that

every q-grid point f with
∑
fi ≤ k is the image of some q-grid point in

⋃
AR.

Also, define b to be the maximum k such that the simplex Ck = {f :
∑
fi ≤ k} is a

subset of
⋃
BR.

We want to prove that the limit lim kq exists and equals b. That is, we want to prove

that for every ε, if q is large enough,

• every q-grid point in Cb−ε is the image under ϕ of some q-grid point in
⋃
AR

(then b ≤ lim inf kq), and

• there is a q-grid point in Cb+ε which is not the image of any q-grid point in
⋃
AR

(then b ≥ lim sup kq).

To prove the first claim, fix q and let f be a point on the hyperplane
∑
fi = b. The

point f is in
⋃
BR, so it is the image of some x ∈

⋃
AR. Each set AR is a downset in

the sense that with every x it also contains all points z such that zi ≤ xi for all i. It

follows that y defined as b
√
q·xc
√
q

is a q-grid point in
⋃
AR. Each entry of y differs by

at most 1√
q

from the corresponding entry of x, and a simple computation suffices to

show that the distance of ϕ(y) and f is at most c√
q
, where c ≤

√
a · 2a−1 is a constant

dependent only on a. That is, for each point f on the hyperplane
∑
fi = b we have

found, in distance at most εq, where εq = c√
q
, an image of a q-grid point from

⋃
AR.

Call this point f′.
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Note that, by definition of χsc (and χsc2), whenever a q-grid point f is the image of

a q-grid point in
⋃
AR, the same is true for all q-grid points in the box Df, defined as

{g : gi ≤ fi for all i}. This is the second part of Lemma 18.

Let h be a q-grid point such that
∑
hi ≤ b−aεq. Let f be its perpendicular projection

on the hyperplane
∑
fi = b and find the corresponding f′. Since the distance of f

and f′ is at most εq, the point h belongs to Df′, and hence it is the image of a q-grid

point in
⋃
AR. Choosing q large enough so that aεq ≤ ε for our given ε concludes the

proof.

To prove the second claim, let f be a point outside ∪BR, but within the distance ε

from Cb. Take a bounded cube Q ⊆ Ra that contains f. Now take a bounded cube S

in R2a which contains all points x such that ϕ(x) ∈ Q. The set T defined as T = S ∩
(
⋃
AR) is compact, so ϕ maps it to a compact set. The complement of ϕ(T ) in ϕ(S)

is open, and contains f. Note that (
⋃
BR) ∩Q ⊆ ϕ(T ).

Therefore, for some small δ, the δ-ball around f is outside
⋃
BR. If q is large

enough, the ball contains some q-grid point. This point not only has no q-grid preim-

ages in ∪AR, it has no preimages in
⋃
AR whatsoever, and the claim is proven. 2

Let Q = Q1∪Q2, with q1 denoting the cardinality of Q1. Let f be an integer-valued

function defined on A ∪ Q, such that f(v) > q1 for v ∈ A, f(v) ≥ 2 for v ∈ Q2, and

f(v) = 1 for v ∈ Q1.

Given this f , define a function f̂ on A ∪Q2, by

f(v) =

{
f(v)− q1 for v ∈ A;

f(v) for v ∈ Q.

Lemma 33. The function f is sufficient for Ka,q if and only if f̂ is sufficient for Ka,q−q1.

Proof. Consider an f̂ -assignment L such that Ka,q2 is not L-colorable. Let 1, . . . , q1

be labels that do not appear in any of the sets of L. Assign these labels as lists to

the vertices of Q1, and add all of them to each list L(v) for v ∈ A. The result is an

f -assignment L′ such that Ka,q is not L′-colorable.

Now consider an f -assignment L′ such that Ka,q is not L′-colorable. Delete the

labels of the vertices in Q1 from all the lists L′(v) for v ∈ A. Delete additional colors

from the lists of the vertices v ∈ A, until each has list of size f̂(v). The restriction
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of the resulting list assignment to A ∪ Q2 is an f̂ -assignment such that Ka,q2 is not

L-colorable. 2

Proof of Theorem 30. Define sequences {aq}∞q=1 and {bq}∞q=1 by

aq =
χsc(a, q)− 2q

√
q

and bq =
χsc2(a, q)− 2q

√
q

.

It was already mentioned that aq ≤ bq for all q.

Let f be a sufficient function on Ka,q with
∑

v∈A∪Q f(v) = χsc(Ka,q). Again, let q1

be the number of vertices v ∈ Q such that f(v) = 1. We have f(v) > q1 for all v ∈ A.

Let d(q) be the number of vertices v ∈ Q for which f(v) 6= 2. Delete these vertices.

The restriction of f̂ to the resulting graph Ka,q−d(q) is sufficient, by Lemma 33, so we

have χsc2(Ka,q−d(q)) ≤ 2(q − d(q)) +
∑

v∈A f̂(v). We get

aq
√
q = χsc(Ka,q)− 2q ≥ χsc(Ka,q)− q1 −

∑
v∈Q

f(v) ≥ χsc(Ka,q)− aq1 −
∑
v∈Q

f(v) =

=
∑
v∈A

f(v)− aq1 ≥ χsc2(Ka,q−d(q))− 2(q − d(q)) = bq−d(q)

√
q − d(q).

We get the following relationship between aq and bq:

bq ≥ aq ≥
√
q − d(q)
√
q

bq−d(q).

We have proved that
∑

v∈A∪Q f(v) ≤ 2q + ca
√
q ln a for some constant c. If any

f(v) decreases by 1, the function becomes insufficient. The argument in the proof of

Theorem 28 shows that for all but at most ca
√
q ln a vertices in Q, we have f(v) = 2.

In other words, d(q) ≤ O(
√
q). The limit limq→∞ bq exits by Theorem 31. We have

lim
q→∞

√
q − d(q)
√
q

bq−d(q) = lim
q→∞

bq,

which proves the claim. 2
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2.8 Graphs with large independent sets

It is natural to consider adding edges to the set A of Ka,q. If we add all
(
a
2

)
possible

edges, all vertices of A have to receive distinct colors in any proper coloring of the

resulting graph. How restrictive is really this additional requirement? Theorem 34

shows that it significantly alters the problem.

Let Ga,q be the graph that we get from Ka,q by inserting the edge uv for every pair

of distinct u, v ∈ A.

Theorem 34. There exist constants c1 and c2, independent of q, such that

2q + c1

√
q(a− 1) ≤ χsc(Ga,q) ≤ 2q + c2

√
q(a− 1)

We first prove a generalization of Turán’s Theorem.

For fixed s and t, let t(s, k) = min
∑k

i=1

(
xi

2

)
, where the minimum is taken over all

(x1, . . . , xk) such that
∑
xi = s.

Theorem 35. Let s, a ≥ 2 be integers. Let L1, . . . , La be sets of size s and G a graph with
less than t(s, a − 1) edges. There exists a system of distinct representatives {u1, . . . , ua}
of L1, . . . , La, such that {u1, . . . , ua} is an independent set in G.

If L1 = · · · = La, this is indeed equivalent to Turán’s Theorem.

Let us also remark that the result is sharp: if G is allowed to have t(s, a− 1) edges,

then taking L1 = · · · = La provides a family that violates the claim, with G being the

disjoint union of a− 1 cliques of almost equal sizes.

Proof. We want a set {u1, . . . , ua} of distinct vertices, such that uk ∈ Lik , where

{i1, . . . , ia} is some permutation of {1, . . . , a}.
Define the vertices u1, . . . , ua one by one. Let V1 = L1 ∪ · · · ∪ La and G1 = G[V1]

(the restriction of G to V1). Let u1 be the vertex of minimum degree in G1, D1 the

closed neighborhood of u1 in G1, and d1 = |D1|. Let Li1 be one of the hyperedges

containing u1.

Suppose that uj, Dj, and Lij are already defined for j = 1, . . . , k. We define Vk+1 =

(
⋃
i 6∈{i1,...,ik} Li)\ (D1∪· · ·∪Dk), Gk+1 = G[Vk+1], and let uk+1 be a vertex of minimum

degree in Gk+1, Dk+1 its closed neighborhood in Gk+1, dk+1 = |Dk+1|, and Li,k+1 one

of the hyperedges containing uk+1, different from Li1 , . . . , Lik .
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If we cannot define uk+1, then Vk+1 is empty, and |D1| + · · · + |Dk| ≥ |Lk+1| = s.

We have k < a and D1, . . . , Dk are non-empty, disjoint sets, so

2|E(G)| ≥
∑

u∈D1∪···∪Dk

deg(u) ≥ d1(d1 − 1) + · · ·+ dk(dk − 1) ≥ 2t(s, k) ≥ 2t(s, a− 1).

2

Proof of Theorem 34. Again, we will prove the upper bound by presenting a sufficient

function f . Let

f(v) =

{
2 for v ∈ Q;

s for v ∈ A.

The result is the essence of Theorem 35 and some algebraic manipulation.

For the lower bound, we imitate the method of Section 2.6. Let {v1, . . . , va} be the

vertices of A and let

f(v) =

{
2 for v ∈ Q;

si for vi.

Without loss of generality, suppose s1 ≤ s2 ≤ · · · ≤ sa. We claim that if f is

sufficient, then q < t(si, i− 1) for all i ≥ 2, and q <
(
s1
2

)
· (s2 − s1).

Suppose that q ≥ t(si, i − 1) for some i ≥ 2. Let L(v1), . . . , L(vi) be nested sets of

the appropriate sizes. Let G be the graph on the vertex set L(vi), consisting of i − 1

disjoint cliques with sizes as equal as possible. Assign the pairs corresponding to the

edges of G as the lists for the vertices of Q. This list assignment is not sufficient.

Likewise, if q ≥
(
s1
2

)
· (s2 − s1), let G be the graph that we get by taking a clique of

order s2 and deleting edges of a clique of order s2 − s1. Assign its edges as the lists

of Q, and let L(v2) = V (G).

We use arguments analogous to the proof of Theorem 28 to conclude the proof for

general lists. 2

We did not try to achieve the best constants possible with this method, since the

method does not give a tight result. We conjecture that the lower bound holds with

equality, at least when the lists of the vertices of Q have size 2.
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Conjecture 36. Let

f(v) =

{
2 for v ∈ Q;

si for vi.

If q < t(si, i− 1) for all i and q <
(
s1
2

)
· (s2 − s1), then Ga,q is f -choosable.
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Chapter 3

Reverse-free codes and permutations

3.1 Motivation and main concepts

Let k and n be natural numbers and X an n-element underlying set. The set of k-

tuples with entries in X is denoted by Xk, its cardinality is nk. The set of k-tuples

with distinct entries is denoted by X(k), with cardinality |X(k)| = n(n − 1) . . . (n −
k + 1) = k!

(
n
k

)
. We have X(k) ⊂ Xk. The set X is often identified with [n]. In this

chapter we omit the parentheses when speaking about k-tuples, e.g., x1 . . . xk is the

shorthand for (x1, . . . , xk).

A code C is simply a subset of Xk, k is called its length, |C| is its size. Its elements

are called the codewords, and X is sometimes called the alphabet. A typical problem

in coding theory is to determine the maximum size of a code satisfying some local

condition. For example, define the Hamming distance of two codewords to be the

number of coordinates where they differ. The following problem is fundamental in

the theory of error-correcting codes:

Given n, q and d, what is the maximum size of a code C ⊆ [q]n such that every two
codewords have Hamming distance at least d?

If the codewords from such a code are sent over a noisy channel and less than d/2

entries are changed in each of them during the transmission, we can still recover the

original codewords at the end, correcting the error.

In this chapter we consider a similar problem, with a different local condition.

Definition 37. Let a and b be two distinct integers. The pair {a, b} is a reversed pair
for a pair of sequences x = x1 . . . xk and y = y1 . . . yk if there are two coordinates

i, j ∈ [k] such that (xi, xj) = (yj, yi) = (a, b). If x and y have no reversed pair, they

are reverse-free.
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A code F is called (pairwise) reverse-free if any two of its members are reverse-free.

Let F (n, k) be the maximum cardinality of a reverse-free codeF ⊂ [n]k, and F (n, k)

the maximum cardinality of a reverse-free code F ⊂ [n](k). That is, in the former we

allow repetitions of symbols, while in the latter we do not.

A natural companion notion is that of a flip-full code, where every two codewords

are required to have a reversed pair.

Given a family F , we can define a |F| × k matrix M(F) in a natural way, by

listing the the sequences in F as its rows. The family F is then reverse-free if M(F)

has distinct rows and does not contain a submatrix of type

(
a b

b a

)
with a 6= b.

Similarly, F is full of flips if every two rows contain such submatrix.

Many coding theory problems can be formulated in this way, as extremal prob-

lems with forbidden submatrices, or with certain submatrices required for every pair

(triple, quadruple...) of rows. For example, if A is a family of sets of ordered triples,

Körner in [44] defines N(A, k) as the maximum number of rows in a k-column ma-

trix such that whenever w, x, y are three rows and A ∈ A, there exists an index i such

that the triple (wi, xi, yi) belongs to A. He reformulates a number of well-known

coding theory problems as special cases of this problem.

A substantial body of work has been also developed for the problem of maximizing

the number of rows of a matrix with a forbidden submatrix, most notable being the

results of Sauer [64], Shelah [65], and Vapnik and Chervonenkis [72]. For a survey

of further results, see [7].

Similar problems have also been investigated in an information-theoretic setting.

The notion of robust capacity was introduced by Körner and Simonyi ([48]) in an

attempt to solve Renyi’s problem of qualitatively independent partitions. Let G be an

undirected graph. We say that two sequences x, y ∈ V (G)k are robustly G-different if

they have a reversed pair {xi, xj} such that {xi, xj} ∈ E(G). The largest cardinality

of a pairwise robustly G-different subset of V (G)k is denoted R(G, k).

The authors of [12] derived bounds for R(L, k) for the semi-infinite path L and

used them to obtain results concerning graph-different permutations.

For G = Kn, R(G, k) is equal to the maximum size G(n, k) of a flip-full code. This

problem is considered in section 3.7.

It is not hard to see that R(G, k) is the clique number of a suitably defined graph.

Within the framework of information theory, one is not interested in determining the
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behavior of R(G, k) precisely, but only in a somewhat rough estimate, captured in

the notion of robust capacity, defined as

lim
k→∞

1

k
logR(G, k).

By substituting the independence number for the clique number in this problem, we

get a similar notion of forbiddance.

All problems considered in this chapter can be interpreted as the problem of deter-

mining the independence number (or the clique number) of suitably defined graphs

whose vertices correspond to permutations of n or to k-tuples with entries in [n] (see

Section 3.8 for more detail). However, unlike the information-theoretic setting, we

are interested in precise values of these parameters.

Similar problems, namely clique and independence numbers of other graphs de-

fined on the set of permutations of [n], have also been considered outside informa-

tion theory. We say that two permutations are t-intersecting if there exist at least t

indices i such that π(i) = ρ(i). The derangement graph has permutations of [n] as its

vertices, and two of them are adjacent if and only if they are not 1-intersecting. It is

easy to see that the independence number of the derangement graph is (n− 1)!. For

every i, j ∈ [n], the set of permutations π such that π(i) = i is a trivial example of a

maximum independent set. It is nontrivial to prove that all maximum independent

sets are of this form. This was done in [16] and independently in [51], thus proving

a version of the Erdős-Ko-Rado theorem for permutations.

Similarly, for every pair of t-tuples (i1, . . . , it) and (j1, . . . , jt) with distinct entries

in [n], the set of permutations π such that π(im) = jm for all m = 1, . . . , t is a t-

intersecting set of permutations of size (n− t)!. Extending the definition of derange-

ment graph, we define a new graph by letting π and σ be adjacent if they are not

t-intersecting. Using the terminology that we introduced for reverse-free families, we

can characterize the cliques of this graph in terms of forbidden submatrices. Namely,

a clique in this graph is a family F of permutations such that M(F) does not contain

the submatrix (
a1 a2 . . . at

a1 a2 . . . at

)
for any choice of a1 . . . at ∈ [n]. Deza and Frankl conjectured in [30] that if n is

sufficiently large with respect to t, then (n−t)! is the maximum size of a t-intersecting
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set of permutations, and they proved a number of special cases. This well-known

conjecture was very recently verified in its full generality in [23].

We will focus mostly on reverse-free codes in this chapter, but we will present

some results about flip-full codes as well. It seems to be difficult to determine the

exact value of F (n, k) and F (n, k), so we concentrate on estimating their asymptotic

behavior with k fixed and n → ∞. We also solve the first non-trivial cases and

determine the asymptotic behavior of F (n, 3) and F (n, 3). Moreover we establish the

order of magnitude of F (3, k).

3.2 Recurrences

The set of all increasing k-tuples from [n] forms a set of pairwise reverse-free k-tuples

with distinct entries. We obtain a lower bound for F (n, k)(
n

k

)
≤ F (n, k). (3.1)

There are k! permutations of k elements, so we have the upper bound

F (n, k) ≤ k!

(
n

k

)
.

Easy as both of these bounds are, they nevertheless show that F (n, k) = Θ(nk) if k is

fixed and n→∞.

One can easily see that in (3.1) equality holds for k = 1 and k = 2

F (n, 1) = n, F (n, 2) =

(
n

2

)
. (3.2)

Let us define the asymptotic density

f(k) = lim
n→∞

F (n, k)

k!

(
n

k

) . (3.3)

We first show that the sequence F (n, k)
/(
k!
(
n
k

))
is monotonically non-increasing

in n and hence the quantity f(k) is well-defined.
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Lemma 38. Fix k. If n1 < n2, then

F (n2, k)

k!

(
n2

k

) ≤ F (n1, k)

k!

(
n1

k

) . (3.4)

Proof. Let F be a pairwise reverse-free set of k-tuples with distinct entries from [n2]

attaining the maximum cardinality |F| = F (n2, k). The restriction of F to A ⊂ [n2],

defined as F [A] = {x ∈ F : all xi ∈ A}, is again a reverse-free family. Counting all

pairs (x, A) where A is an n1-subset of [n2] and x is a k-tuple of elements of A that

belongs to F , we obtain

the number of (x, A) pairs =
∑
x∈F

|{A : x ∈ F [A]}| = F (n2, k)

(
n2 − k
n1 − k

)
=

∑
A∈([n2]

n1
)

|{x : x ∈ F [A]}| =
∑
|F [A]| ≤

(
n2

n1

)
F (n1, k).

Noting that
(
n2−k
n1−k

)(
n2

k

)
=
(
n2

n1

)(
n1

k

)
, the conclusion follows. 2

Consider the matrix M of a reverse-free code F ⊂ [n](k) and restrict its columns to

a subset I ⊂ [k] of size |I| = i. After removing the repeated rows we obtain a smaller

reverse-free code. Thus M |I contains at most F (n, i) distinct rows. Let y be a row

of M |I and consider the family F ′ ⊆ F of k-tuples x such that the restriction of y to I

is equal to y. The restrictions of these x to [k] \ I form a reverse-free family of length

k − i, with alphabet [n] \ {y1, . . . , yi}. We obtain the following lemma.

Lemma 39. F (n, k) ≤ F (n, i)F (n− i, k − i). 2

Using Lemma 39 and the observations in (3.2), we have

F (n, k) ≤ F (n, 2)F (n− 2, k − 2) ≤ F (n, 2)F (n− 2, 2) . . . F (n− 2i, k − 2i)

≤

 ∏
0≤i≤bk/2c−1

(
n− 2i

2

)F (n− 2bk/2c, k − 2bk/2c) =
k!
(
n
k

)
2b

k
2
c
. (3.5)
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And finally, putting together the inequalities (3.1) and (3.5),

1

k!
≤ f(k) ≤ 1

2b
k
2c
. (3.6)

If k = 2, these bounds are tight and we have f(2) = 1/2. We determine f(3) in

Sections 3.4 and 3.5.

We will list one more useful lower bound formula for F (n, k). Take two reverse-

free codes, F1 ⊂ X(k1) and F2 ⊂ Y(k2). If X and Y are disjoint, then we can make

a product code F with alphabet X ∪ Y by concatenating every x ∈ F1 with every

y ∈ F2. Then F is reverse-free, and we obtain

F (n1, k1)F (n2, k2) ≤ F (n1 + n2, k1 + k2). (3.7)

Let us turn our attention briefly to codes with repetitions allowed. All nondecreas-

ing sequences of k elements from [n] form a reverse-free set in this case as well. We

have (
n+ k − 1

k

)
≤ F (n, k), F (n, 1) = n and F (n, 2) =

(
n+ 1

2

)
. (3.8)

Let F be a reverse-free code and for each x ∈ F , define its i-support to be the set

suppi(x) = {` : x` = i}. If the alphabet only consists of two symbols, say 1 and 2,

then the sets supp1(x) form a chain, thus

F (1, k) = 1 and F (2, k) = k + 1. (3.9)

3.3 Small constructions

In this section we collect a few small optimal constructions. The ideas of the con-

structions and the proofs here are used again later. We have

F (3, 3) = 3, F (4, 3) = 6, F (5, 3) = 15,

and

F (4, 4) = 5, F (5, 5) = 13, F (3, 3) = 11. (3.10)
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For n = k = 3 it is hard not to see that two ordered triples on three elements are

reverse-free if and only if one is a cyclic shift of the other. We have F (3, 3) = 3, and

the optimal constructions are {abc, cab, bca} and {cba, acb, bac}.

Lower bounds.

The lower bounds for F (4, 3) and F (5, 3) can be obtained by considering the set

of directed triangles of particular directed graphs on n = 4 and n = 5 vertices,

respectively. Namely, one can consider the directed graph with edges (1, 2), (2, 3),

(3, 1), (1, 4) and (4, 3) (then the directed triangles are 123, 231, 312 and 143, 431,

314). For n = 5 we take the directed triangles of the tournament with the edge-set

{(i, i+ 1), (i, i+ 2)} where all numbers are taken modulo 5.

The lower bound constructions for F (4, 4), F (5, 5) and F (3, 3) are given in Fig-

ure 3.1.

Upper bounds.

The case F (4, 3) is easy, and F (5, 3) ≤ (5/2) · F (4, 3) = 15 follows from Lemma 38.

Concerning a reverse-free code F ⊂ [4](4), suppose that there exists an element

appearing at least twice in the same position. Without loss of generality, the element

1 is in the first position twice, say 1234 ∈ F and 1423 ∈ F . If another shift 1342

belongs to F , then there are no more triples that we can add, |F| = 3 and we are

done. Otherwise, the only other possible members of F are 2341 and 2431, 3124 and

3142, and 4213 and 4312. However, each of these three pairs has a reversed pair, so

only one of each pair can belong to F . This implies |F| ≤ 5.

The case F (5, 5) = 13 was proved by a computer search.

Suppose L is a reverse-free code of length 3, on three symbols A, B and C. We can

have 3 sequences using one symbol (AAA, BBB and CCC), and 2 sequences using

both A and B and not using C, so altogether L can have 3 + 3×2 = 9 members using

at most two symbols and three sequences using all three symbols. These are 9+3=12

sequences, but if L contains ABC and two cyclic shifts, then it has no member with

exactly two symbols. This implies F (3, 3) < 9 + 3.
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 a b c
c a b
b c a




1 2 3 4
1 4 2 3
2 3 4 1
3 1 2 4
4 3 1 2





1 2 3 4 5
2 3 4 5 1
2 5 4 1 3
2 4 1 5 3
3 5 4 2 1
3 5 2 1 4
3 1 5 2 4
4 3 5 2 1
4 1 5 3 2
4 3 1 5 2
5 4 1 3 2
5 4 2 1 3
5 1 2 3 4



L =



AAA
BBB
CCC
AAB
AAC
ABB
CBB
CAC
CBC
ABC
CAB

Figure 3.1: Constructions for F (3, 3), F (4, 4), F (5, 5) and F (3, 3).

3.4 An iterated construction of reverse-free triple
systems

We have shown already in (3.6) that 1
6
≤ f(3) ≤ 1

2
. In fact, both of these bounds are

far from the truth. In this section and the next one we show that the exact value is

f(3) = 5/24. In other words, we show that

F (n, 3) =

(
5

4
+ o(1)

)(
n

3

)
.

Theorem 40. For any n ∈ N, we have

F (n, 3) >
5

24
n3 − 1

2
n2 −O(n log n).

If n is a power of 3, we have

F (n, 3) ≥ 5

24
n3 − 1

2
n2 +

5

8
n.

Proof. Our aim is to build a large reverse-free family F of triples with entries in [n].

Let A,B,C be disjoint sets of sizes a,b, and c respectively, such that [n] = A ∪ B ∪ C.

Take three reverse-free families, FA, FB, and FC , on the sets A,B,C, of sizes F (a, 3),
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F (b, 3), and F (c, 3). The underlying sets of these families are disjoint, so the union

FA ∪ FB ∪ FC is also reverse-free. We include all these triples in F .

We will add more triples to F . To this end, let us introduce the type of the triple x =

x1x2x3 to be the triple X1X2X3, where Xi ∈ {A,B,C} is such that xi ∈ Xi. All triples

that we will add will be of one of the 11 types specified by L in Figure 3.1. The family

L is reverse-free, so adding triples in this way generates only a few conflicts. The only

way a triple can have a pair that is reversed in another triple is if both elements of

the pair belong to the same set in the decomposition A,B,C. For example, there can

be a triple x1x2x3 ∈ ABB whose last two elements are reversed in another triple of

type ABB, in a triple of type CBB, or in a triple in FB (i.e., type BBB).

Define a directed graph GA on the vertex set A by putting

E(GA) = {(x, y) : xyz ∈ FA for some z ∈ A}.

If GA is not a tournament, add some edges with arbitrary orientations to turn it into

one. Take all triples of type AAB that are consistent with GA, that is, all triples

x1x2x3 such that (x1, x2) ∈ E(GA) and x3 ∈ B, and add them to F . There are
(
a
2

)
b

such triples. Similarly, add all
(
a
2

)
c triples of type AAC consistent with GA.

In an analogous way, define a tournament GB with V (GB) = B and E(GB) =

{(x, y) : zxy ∈ FB for some z ∈ B}, and add all triples of types ABB and CBB

consistent with GB to F . There are
(
b
2

)
(a+ c) of those.

And finally, add all
(
c
2

)
(a + b) triples of types CAC and CBC, consistent with the

tournament GC on C, with E(GC) = {(x, y) : yzx ∈ FC for some z ∈ C}.
This leaves only the types ABC,CAB. Include all the 2abc triples of these types

in F .

The family F that we constructed is reverse-free. Altogether, we get

F (a+ b+ c, 3) ≥ |F| =F (a, 3) + F (b, 3) + F (c, 3)+

+

(
a

2

)
(b+ c) +

(
b

2

)
(a+ c) +

(
c

2

)
(a+ b) + 2abc

47



or equivalently, by rearranging the above formula,(
F (a+ b+ c, 3)−

(
a+ b+ c

3

))
≥ (3.11)

≥
(
F (a, 3)−

(
a

3

))
+

(
F (b, 3)−

(
b

3

))
+

(
F (c, 3)−

(
c

3

))
+ abc.

In particular, if n is a power of 3, we can split the underlying set in three equal parts

in each step, and the recurrence (3.11) together with the starting value F (3, 3) = 3

yields

F (n, 3) ≥ 5

24
n3 − 1

2
n2 +

5

8
n, (3.12)

proving the second part of our theorem.

For general n, in order to give a lower bound for F (n, 3), we seek an upper bound

on the remainder term r(n) defined by

F (n, 3) =

(
n

3

)
+

1

24
n3 +

7

24
n− r(n).

Note that the quantity in (3.12) equals
(
n
3

)
+ 1

24
n3 + 7

24
n. Theoretically, the remainder

r(n) might be negative, but that would only improve the lower bound. Substituting

in (3.11), we obtain

(a+ b+ c)3

24
− r(a+ b+ c) ≥ a3 + b3 + c3

24
+ abc− r(a)− r(b)− r(c).

Letting a, b and c be the appropriate numbers with pairwise differences not exceed-

ing 1, we have

r(3n) ≤ 3r(n)

r(3n− 1) ≤ 2r(n) + r(n− 1) +
1

4
n

r(3n+ 1) ≤ 2r(n) + r(n+ 1) +
1

4
n.

It easily follows by induction that, for some constant C,

r(n) ≤ Cn log n,
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completing the proof of Theorem 40. 2

3.5 An upper bound on reverse-free triple systems

Theorem 41.

F (n, 3) ≤


5

24
n3 − 1

2
n2 +

5

8
n for n odd,

5

24
n3 − 1

2
n2 +

1

2
n for n even.

In order to give an upper bound on the number of triples in a reverse-free set, we

group them according to their underlying 3-element sets. We define the underlying
set of an ordered triple to be the set of its three elements. We say that that the set

{u, v, w} has i occurrences in F if F contains i ordered triples with this underlying set.

The family of three-element sets having exactly i occurrences in F will be denoted

by Ti. In this section, we refer to a fixed reverse-free family F whenever we talk

about Ti.

Lemma 42. |T0|+ |T1|+ |T2|+ |T3| =
(
n
3

)
.

Proof. The sets Ti form a partition of
(

[n]
3

)
. Two ordered triples with the same un-

derlying set are reverse-free if and only if one is a cyclic shift of the other, so any

three-element set has at most three occurrences in F . 2

Lemma 43. If 0 ≤ d1 ≤ d2 ≤ · · · ≤ dn ≤ n− 1 are integers such that

n∑
i=1

di =
n(n− 1)

2
,

then

n∑
i=1

(
di
2

)
≥


n

(
n−1

2

2

)
if n is odd,

n

2

(
n−2

2

2

)
+
n

2

(
n
2

2

)
if n is even.
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Proof. Let d1, . . . , dn be a sequence that minimizes
∑n

i=1

(
di

2

)
under the conditions

given by the hypothesis. The average of the di’s is equal to n−1
2

. It follows that if n is

even and di ∈ {n2 ,
n−2

2
} for all i, then di = n

2
for exactly half of the di’s, and we are

done. If n is odd and di = n−1
2

for all i, then the situation is even simpler; there is

nothing to prove.

If, on the other hand, d1 <
n−2

2
, then dn > d1 + 1. A simple computation shows that

in this case we have (
d1 + 1

2

)
+

(
dn − 1

2

)
<

(
d1

2

)
+

(
dn
2

)
while preserving the sum of the di’s, which is a contradiction. 2

For a directed graph G, let c(G) be the number of directed triangles in G.

Corollary 44. If D is a tournament on n vertices, then

c(D) =

(
n

3

)
−
∑

v∈V (G)

(
d+(v)

2

)
≤


n3 − n

24
for n odd,

n3 − 4n

24
for n even.

Proof. In a tournament, each triangle is either directed or undirected. The undirected

triangles of D are in one-to-one correspondence with pairs of edges sharing a tail.

There are
∑

v∈V (G)

(
d+(v)

2

)
such pairs. The out-degree sequence of D satisfies the

hypotheses of Lemma 43. 2

Given the code F , we create a directed graph G1 on the vertex set [n] by putting

uv ∈ E(G1) whenever there exists a vertex x such that uvx ∈ F . Note that uv ∈ E(G1)

implies vu 6∈ E(G1). If the resulting graph is not a tournament, we add edges arbi-

trarily to turn it into one. Similarly, let G2 be a tournament that contains all edges uv

such that, for some vertex x, we have xuv ∈ F , and G3 a tournament containing all

edges uv such that vxu ∈ F for some x.

Define two additional directed graphs, D andM, by putting

E(M) = {uv : uv ∈ E(Gi) ∩ E(Gj) for some pair i, j ∈ {1, 2, 3}}

E(D) = {uv : uv ∈ E(G1) ∩ E(G2) ∩ E(G3)}. (3.13)
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G1

4

1 2

3

G2

4

1 2

3

G3

4

1 2

3

M

4

1 2

3

D

4

1 2

3

Figure 3.2: The graphs G1, G2, G3, M and D for the family F = {123, 124, 312,
412, 413, 423}. The directions of the dotted edges were chosen arbitrarily. The graphs
M and D reflect this choice.

Figure 3.2 shows what these graphs might look like for a particular family F .

Lemma 45.

|T2|+ |T3| ≤


n3 − n

24
if n is odd,

n3 − 4n

24
if n is even.

Proof. If uvw and vwu both belong to F , then uv ∈ E(G1) and uv ∈ E(G3), so

uv ∈ E(M). Similarly, vw,wu ∈ E(M). We therefore have |T2| + |T3| = |T2 ∪ T3| ≤
c(M), and the result follows. 2

Lemma 46. |T3| − |T0| ≤
n

3
.

Proof. For any vertex u of the graph D, define the family

Su = {{u, v, w} : uv ∈ E(D) and uw ∈ E(D)}.

It is easy to see that
⋃
u∈[n] Su ⊆ T0. The family Su consists of all three-element sets

containing u and two of its out-neighbors in D, hence |Su| =
(
d+(u)

2

)
(the out- and
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in-degree of the vertex u refer to the directed graph D). For u 6= v the families Su
and Sv are disjoint, so |T0| ≥

∑(
d+(u)

2

)
. Similarly, |T0| ≥

∑(
d−(u)

2

)
. It follows that

|T0| ≥
1

2

∑
u∈[n]

[(
d+(u)

2

)
+

(
d−(u)

2

)]
. (3.14)

Each three-element set from T3 induces a directed triangle in D. A vertex u in

D(F) is in at most d+(u) · d−(u) directed triangles and hence

|T3| ≤ c(D) ≤ 1

3

∑
u∈[n]

d+(u) · d−(u). (3.15)

Subtract (3.14) from (3.15). Use the fact that for non-negative integers p, q we have
1
3
pq − 1

4
(p2 − p)− 1

4
(q2 − q) ≤ 1

3
. We obtain

|T3| − |T0| ≤
∑
u∈[n]

[
1

3
d+(u) · d−(u)− 1

2

(
d+(u)

2

)
− 1

2

(
d−(u)

2

)]
≤ n

3
.

This concludes the proof of the claim. 2

Proof of Theorem 41. We add the three inequalities that we obtained in Lemmas 42,45

and 46.

|F| = |T1|+ 2|T2|+ 3|T3|

=

(
n

3

)
+ (|T2|+ |T3|) + (|T3| − |T0|)

≤


5

24
n3 − 1

2
n2 +

5

8
n for n odd

5

24
n3 − 1

2
n2 +

1

2
n for n even.

2
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3.6 Reverse-free triple systems: The case of repetitions

In this section we determine the asymptotics of F (n, 3). We already know that
(
n
k

)
≤

F (n, k) ≤ k!
(
n
k

)
and

(
n+k−1

k

)
≤ F (n, k) ≤ nk. It follows that if k is fixed and n → ∞,

the two quantities have the same order, namely Θ(nk).

For k = 3 we again have an exact result.

Theorem 47. For any n ∈ N, we have

5

24
n3 +

1

2
n2 −O(n log n) < F (n, 3) ≤ 5

24
n3 +

1

2
n2 +

7

24
n,

and when n is a power of 3, equality holds in the upper bound.

Proof of the lower bound. The proof follows the outline of the proof of Theorem 40.

We want to build a large reverse-free family F ′ ⊆ [n]3. Partition [n] into three non-

empty sets A,B, and C of sizes a, b, and c. Again, all the ordered triples in F ′

will have a type from the set L defined in Figure 3.1. As for the types AAA, BBB,

and CCC, we have three reverse-free families on A, B, and C respectively, of sizes

F (a, 3), F (b, 3), and F (c, 3). Put all these triples into F ′. The three families define

graphs GA, GB, and GC . As in the proof of Theorem 40, take all the triples in [n](3)

(i.e., without repetition) of types AAB and AAC that are consistent with GA, and

include them in F ′. Furthermore, put into F ′ all triples xxy and xxz for x ∈ A, y ∈ B,

and z ∈ C. Altogether, we added
(
a
2

)
(b + c) + ab + ac =

(
a+1

2

)
(b + c) triples. Proceed

analogously with GB and the types CBB, ABB, and with GC and the types CAC,

CBC. Conclude with adding the 2abc triples of types ABC and CAB. The resulting

set is reverse-free. We have

F (a+ b+c, 3) ≥ |F ′| = F (a, 3) + F (b, 3) + F (c, 3)+

+

(
a+ 1

2

)
(b+ c) +

(
b+ 1

2

)
(a+ c) +

(
c+ 1

2

)
(a+ b) + 2abc. (3.16)

If n is a power of 3, the inequality (3.16) together with the base case F (3, 3) = 11

yield the lower bound

F (n, 3) ≥ 5

24
n3 +

1

2
n2 +

7

24
n. (3.17)
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For a general n we proceed as in the proof of Theorem 40 to prove that (3.17) is at

most O(n log n) far from F (n, 3). 2

Proof of the upper bound. Let F ⊆ [n]3 be a reverse-free code of the maximum size,

F (n, 3). As in the proof of Theorem 41, each triple in F has an underlying set asso-

ciated with it, i.e., the set of its symbols. Let Fi be the set of all ordered triples of F
whose underlying set has cardinality i. Clearly, |F| = |F1|+ |F2|+ |F3|, and |F1| ≤ n.

Moreover, the triples with underlying sets of size 3 do not have repeated elements,

so |F3| ≤ F (n, 3). It remains to bound |F2|. Given any two distinct elements x, y

from [n], at most one triple from each of the sets {xxy, xyx, yxx} and {yyx, yxy, xyy}
belongs to F2, so at most two triples with underlying set {x, y} appear in F2, and we

have |F2| ≤ 2
(
n
2

)
. Define the graph D with respect to F3 in the same way as in (3.13).

If xy ∈ E(D), then none of the six triples with underlying set {x, y} can be in F3.

Hence |F2| ≤ 2
(
n
2

)
− 2E(D). As in the proof of Theorem 41, we get

|F| = |F1|+ |F2|+ |F3|

≤ n+ 2

(
n

2

)
− 2E(D) +

(
n

3

)
+ (|T2|+ |T3|) + (|T3| − |T0|). (3.18)

Using (3.14) and (3.15) we have

|T3| − |T0| − 2E(D) ≤

≤
∑
u∈[n]

[
1

3
d+(u) · d−(u)− 1

2

(
d+(u)

2

)
− 1

2

(
d−(u)

2

)
− d+(u)− d−(u)

]
≤ 0 (3.19)

where in the last inequality we use the fact that we have 1
3
pq− 1

4
(p2− p)− 1

4
(q2− q)−

p− q ≤ 0 for any p, q. From (3.18) using Lemma 45 and (3.19) we have

|F| ≤


5

24
n3 +

1

2
n2 +

7

24
n for n odd

5

24
n3 +

1

2
n2 +

1

6
n for n even.

This concludes the proof. 2

The argument for the upper bound sheds some additional light on the lower bound
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as well. Notice that the value in (3.17) equals F (n, 3) + n + 2
(
n
2

)
− n

3
. Indeed,

the lower bound construction may be obtained from the construction for F (n, 3) by

adding triples xxx for all x, two triples with support {x, y} for each pair x, y (one

from {xxy, xyx, yxx} and one from {yyx, yxy, xyy}), and removing a triple xyz of

three distinct elements if {x, y, z} was an underlying set for three triples (there were

n/3 of those). Notice that the induction step does not introduce any edges of D, so

the lastly mentioned operation removed all of them.

3.7 A related problem: Codes with many flips

A code G ⊂ [n]k is flip-full if there is a reversed pair of distinct symbols for every pair

of its members. Let G(n, k) be the maximum size of a flip-full code G ⊂ [n](k), and let

G(n, k) be the analogous quantity for [n]k.

Obviously G(2, 2) = G(3, 3) = 2. We have

G(4, 4) = 4 and G(5, 5) = 8. (3.20)

The lower bounds are given by the following constructions


1 2 3 4

1 2 4 3

2 1 3 4

2 1 4 3





5 1 2 3 4

5 2 1 4 3

5 3 4 1 2

5 4 3 2 1

4 1 2 3 5

4 2 1 5 3

4 3 5 1 2

4 5 3 2 1


, (3.21)

and computer searches show that these lower bounds are tight.

Lemma 48. G(n1, k1)G(n2, k2) ≤ G(n1 + n2, k1 + k2).

Proof. Take two flip-full codes, G1 ⊂ X(k1) and G2 ⊂ X(k2), for disjoint sets X and Y .

Let G be the product code on the alphabet X ∪ Y obtained by concatenating each

x ∈ G1 and each y ∈ G2. Such G is flip-full. 2
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Corollary 49. 1
8
(1.515 . . . )n < G(n, n).

Proof. G(n, n) ≥ G(5, 5)·G(n−5, n−5) ≥ · · · ≥ G(5, 5)bn/5cG(n−5bn/5c, n−5bn/5c) ≥
8bn/5c >

1

8
(1.515 . . . )n. 2

3.8 Long permutations

Define a graph Pn by setting

V (Pn) = {π : π is a permutation of [n]} (3.22)

E(Pn) = {{π, ρ} : π and ρ have a reversed pair}. (3.23)

The quantities F (n, n) and G(n, n) correspond to the independence number and

the clique number of Gn, respectively. The graph Pn is vertex-transitive, so we can

use the clique-coclique bound

G(n, n)F (n, n) ≤ n!.

It is easy to prove this bound directly for this particular graph. In the next section we

prove a stronger version of the inequality, so we omit the proof here.

Let us also remark here that, if we define the graph Pn,k on the set of ordered

k-tuples out of [n] in an analogous way, the clique-coclique bound becomes

G(n, k)F (n, k) ≤ k!

(
n

k

)
. (3.24)

Lower bounds on G(n, n) obtained in Section 3.7 translate into upper bounds on

F (n, n).

Corollary 50. F (n, n) ≤ n!

G(n, n)
≤ 8 · n!

(1.515 . . . )n
.

For G(6, 6), the lower bound from Lemma 48 reduces to the rather trivial G(6, 6) ≥
G(5, 5) = 8. With this value, the upper bound from Corollary 50 is

F (6, 6) ≤ 6!

8
= 90. (3.25)
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Since the graphs Pn are vertex transitive, it seems natural to try to use eigenvalue

techniques to estimate the independence number. This approach worked for other

graphs defined on the set of permutations. For example, Renteln in [61] completely

determined the eigenvalues of the derangement graph Qn (where two permutations

π and ρ are adjacent if there is no i such that π(i) = ρ(i)). And Godsil and Meagher

in [34] used methods of representation theory to give a new proof of the Erdős-

Ko-Rado Theorem for permutations. They used group characters to characterize

the extremal cases, i.e., to show that every clique of order (n − 1)! in Qn is triv-

ial. Their work was extended in [23] by Ellis, Friedgut and Pilpel, who used spectral

methods and representations of the symmetric group to prove the analogue of the

Erdős-Ko-Rado Theorem for t-intersecting permutations – they proved that pairwise

t-interesting family of permutations of [n] has no more than (n− t)! members, if n is

sufficiently large.

Using computer, we determined the eigenvalues of Pn for n = 1, . . . , 6. In particu-

lar, the distinct eigenvalues of P6 are −27,−21,−15,−3, 0, 3, 5, 9, 25, 285, with multi-

plicities 25, 100, 26, 25, 256, 100, 81, 25, 81, 1 respectively.

A well-known result due to Hoffman ([38]) is that if G is a d-regular graph and τ

its least eigenvalue, then

α(G) ≤ |V (G)|
1 + d

|τ |
. (3.26)

Proposition 51. F (6, 6) ≤ 62.

Proof of Proposition 51. The graph P6 is 285-regular with 6! vertices, and the smallest

eigenvalue is τ = −27. Substituting these values in the Hoffman bound (3.26), we

have F (6, 6) ≤ 6!
1+ 285
|−27|
≤ 62.31. 2

This is an improvement over 3.25. However, it seems hard to derive a formula for

the least eigenvalue of Pn for general n (or even just a lower estimate).

To obtain a lower bound for F (n, n), we introduce one more recurrence.

Lemma 52. F (n, a)bF (b, b) ≤ F (nb, ba).

Proof. Take the reverse-free codes F i ⊂ X i
(a) where X1, ..., Xb are disjoint n-sets and

|F i| = F (n, a), and consider a reverse-free code G ⊂ [b](b) of size F (b, b). One can

create a reverse-free code F of size (
∏
|F i|)|G| with underlying set ∪X i and of length
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ab by taking a codeword xi from each F i and a member σ ∈ G and creating all the

ab-tuples of the form (xσ(1), . . . , xσ(b)). 2

Corollary 53. F (n, n) ≥ 1
n2 (1.898 . . . )n.

Proof. Starting with F (5, 5) = 13, induction gives F (5t, 5t) ≥ 13
5t

4
− 1

4 .

Write n as n =
∑blog5 nc

i=0 ci5
i with 0 ≤ ci ≤ 4. Note that

∑blog5 nc
i=0 ci ≤ 4 log5 n. Using

(3.7) we obtain

F (n, n) ≥
blog5 nc∏
i=0

F (5i, 5i)ci ≥ 13
n
4
− 1

4

Pblog5 nc
i=0 ci ≥ 1

n2
13n/4 ≥ 1

n2
(1.898 . . . )n.

2

3.9 Better upper bounds for F (n, k), F (n, k)

The following lemma generalizes the clique-coclique bound from section 3.8.

Lemma 54. G(k, k)F (n, k) ≤ k!
(
n
k

)
.

Proof. Consider a reverse-free code F ⊂ [n](k) and a flip-full code G ⊂ [k](k). Consider

all k-tuples of the form (xσ(1), . . . , xσ(k)) where x ∈ F and σ ∈ G. We claim these

are all distinct. Indeed, suppose that (xσ(1), . . . , xσ(k)) = (yτ(1), . . . , yτ(k)), x, y ∈ F ,

σ, τ ∈ G, and (x, σ) 6= (y, τ). Since x has no repeated symbols, x 6= y. But then also

σ 6= τ . By the definition of G there are i 6= j with σ(i) = τ(j) and σ(j) = τ(i) 6= α.

Let α = σ(i) and β = σ(j). We have xσ(i) = yτ(i), xσ(j) = yτ(j), and α 6= β, implying

that (xα, xβ) and (yα, yβ) are reversed pairs, a contradiction. 2

Using Lemma 54 together with Corollary 49, we can improve the bounds (3.5)

and (3.6).

F (n, k) ≤
k!
(
n
k

)
G(k, k)

and f(k) ≤ 1

G(k, k)
≤ 8

(1.515 . . . )k
.

However, this upper bound would be more useful if we had stronger lower bound

on G(n, n). As it is, we get better results using Theorem 41 and Lemma 39.
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Proposition 55. F (n, k) ≤ k!(n
k)

(1.686···+o(1))k .

Proof. In Theorem 41 we proved that F (n, 3) =
(

5
4

+ o(1)
(
n
3

))
. We also know that

F (n− 3bk/3c, 1) = n− 3bk/3c and F (n− 3bk/3c, 2) =

(
n− 3bk/3c

2

)
.

Using Lemma 39 repeatedly together with the above, we get

F (n, k) ≤ F (n, 3)F (n− 3, 3)F (n− 6, 3) . . .

≤
(

5

4
+ o(1)

)bk/3c
n(n− 1) . . . (n− k + 1)

6bk/3c

≤
(

5

24
+ o(1)

)k/3
k!

(
n

k

)
=

k!
(
n
k

)
(1.686 · · ·+ o(1))k

.

2

The proof of the following inequality is the same as the proof of Lemma 39

F (n, k) ≤ F (n, i)F (n, k − i). (3.27)

Combine Theorem 47 and (3.27) to obtain

Proposition 56. F (n, k) ≤ F (n, 3)bk/3cnk−3bk/3c ≤
(

5
24

+ o(1)
)k/3

nk = nk

(1.686···+o(1))k .

3.10 Small alphabets

When n is fixed and the length of the codewords k tends to ∞, then the order of

magnitude of the maximum size code is polynomial in k.

Theorem 57. If n ≥ 2, k ≥ 2, then

(
k(
n
2

))(n
2)

≤ F (n, k) ≤
(

k

≤ n− 1

)(
k

≤ n− 2

)
. . .

(
k

≤ 1

)
= O

(
k(n

2)
)
,

where
(
k
≤`

)
stands for

∑
0≤i≤`

(
k
i

)
.
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Proof of the upper bound. We fix k and use induction on n, with F (1, k) = 1 and

F (2, k) = k + 1 as the base cases.

Let F ⊂ [n]k be a reverse-free code, n, k ≥ 3. Let x ∈ [n]k be an arbitrary codeword.

Define its i-support, suppi(x), as the subset of the coordinates where x takes the

value i,

suppi(x) = {` : x` = i}.

Let F1 be the family of the 1-supports and for each A ∈ F1 let

FA = {y ∈ F : supp1(y) = A}.

Our first observation is that A cannot appear as a 1-support too many times,

|FA| ≤ F (n− 1, k − |A|). (3.28)

Indeed, the projection FA|([k] \A) is a reverse-free code of length k− |A| using n− 1

symbols (namely {2, 3, . . . , n}), so (3.28) follows.

Hence by induction hypothesis

|FA| ≤ F (n− 1, k) ≤
(

k

≤ n− 2

)
. . .

(
k

≤ 1

)
.

We claim that

|F1| ≤
(

k

n− 1

)
+

(
k

n− 2

)
+ · · ·+

(
k

0

)
=

(
k

≤ n− 1

)
. (3.29)

The upper bound then follows.

Our main tool for the proof of (3.29) is the following theorem which was discov-

ered independently and about the same time by Sauer [64], Shelah [65] and Vapnik

and Chervonenkis [72], and became an important result in different contexts. Let M

be a m × k matrix of 0’s and 1’s with distinct rows. We say that the VC-dimension
of M is at least s if one can find s columns S such that M |S, the matrix restricted to

these columns, contains all the 2s possible 0-1 rows. It is known ([64, 65, 72]) that

if the VC-dimension is at most s, then

m ≤
∑

0≤i≤s

(
k

i

)
. (3.30)
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We claim that the VC-dimension of F1 is at most n− 1. Thus (3.30) implies (3.29).

Suppose to the contrary that there exists an n-set S ⊂ [k], S = {s(1), . . . , s(n)}, such

that F induces all possible traces, F|S = 2S. Then there are members F (i) ∈ F1

such that F (i) ∩ S = S \ {s(i)}, 1 ≤ i ≤ n. This means that there exist x(i) ∈ F with

coordinates

x(i)
s =

{
1 for s ∈ S, s 6= s(i),

αi for s = s(i),

where αi ∈ {2, 3, . . . , n}, i ∈ [n]. By the pigeonhole principle we obtain indices

i, j ∈ [n] such that i 6= j but αi = αj. Then x(i) and x(j) contain a reversed pair (at

coordinates s(i) and s(j)). This final contradiction completes the proof of the upper

bound. 2

Proof of the lower bound. We explicitly construct a reverse-free code F ⊂ [n]k of the

desired size.

Split [k] into n(n−1)/2 almost equal parts, [k] = ∪1≤i<j≤nVi,j. Here |Vi,j| ≥ bk/
(
n
2

)
c.

Take a reverse-free family Fi,j of |Vi,j|+ 1 vectors with coordinates Vi,j such that each

x ∈ Fi,j takes values i and j only. Define F as the product of all of these families

F = {y ∈ [n]k : y|Vi,j ∈ Fi,j for all 1 ≤ i < j ≤ n}.

This F is reverse-free. Suppose to the contrary that there exist x, y ∈ F such that

{xα, xβ} = {yα, yβ} is a reversed pair. If i denotes xα = yβ and j denotes xβ = yα with

j > i, then xα, xβ ∈ Vi,j, but Fi,j has no reversed pairs, a contradiction. 2

3.11 Hypergraph problems

Throughout this chapter we have dealt with a problem concerning k-tuples from a

set of n elements. However, it is worthwhile to look at this problem also from some

different perspectives.

We can consider it in the spirit of Turán type problems. Turán problems [71] deal

with questions of the following type: Given a family of graphs H, what is the max-

imum number of edges that an n-vertex graph may have if it does not contain any
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of the graphs in H as a subgraph? This type of problems has been studied exten-

sively and has been generalized to different types of combinatorial structures. As

we move from ordinary graphs to directed graphs, these problems become much

more complicated, and for hypergraphs they are notoriously difficult. In this case,

exact results are rare and even the asymptotic behavior is poorly understood (see,

e.g., [31]). In particular the case of uniform hypergraphs has drawn considerable

attention [18, 33, 43, 42]. The problem of pairwise reverse-free k-tuples is a Turán

type problem for a particular generalization of this structure, directed uniform hyper-

graphs. For the sake of completeness we state the definition of a directed k-uniform

hypergraph according to [14].

Definition 58. A k-uniform directed hypergraph H is a pair (V,E), where V is a

finite set of vertices and E is a family of ordered k-tuples of vertices (all vertices in

each k-tuple must be distinct, i.e., we do not allow loops).

Therefore in the light of this reformulation it would be interesting to determine at

least the asymptotic behavior of this non-trivial problem.

3.12 Traces

We can consider our problem from another point of view. Note that the pairwise

reverse-free property of a set of k-tuples trivially implies that any projection of such

a set on two coordinates contains at most
(
n
2

)
different pairs. Thus, loosely speak-

ing, we ask how large a set of k-tuples can be if its projections (in this case on

two coordinates) are somehow “small”. This question is very much in the spirit of

Vapnik-Chervonenkis dimension type problems. The result (3.30) was generalized

by Frankl [29] and Alon [3] as follows.

Let F ⊂ [n]k be a set of sequences. We say that F → (s, r), or that F is (s, r)-dense,

if there exists an s-set S ⊂ [k] such that it induces at least r traces, i.e., |F|S| ≥ r,

where F|S is the projection of F to the coordinates from S, F|S = {x|S : x ∈ F}.
The family F is monotone if x ∈ F , x = (x1, . . . , xk), y ∈ [n]k, 1 ≤ yi ≤ xi for 1 ≤ i ≤ k

imply y ∈ F . The theorem by Frankl and Alon says that if F 6→ (s, r), then one can

find a monotone family F ′ ⊂ [n]k of the same size |F ′| = |F|, such that F ′ 6→ (s, r).

Further information on matrices with forbidden configurations can be found in the

papers of Anstee and Sali, see [7, 6].
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If we restrict ourselves to the quantitative version of the pairwise reverse-free prop-

erty, it is not difficult to see that the exact asymptotics can be determined. Indeed,

a pairwise reverse-free family induces at most
(
n
2

)
pairs on a projection on any two

coordinates, in other words F 6→ (2,
(
n
2

)
+ 1).

Let F ′ be the monotone family such that |F| = |F ′| and F ′ 6→ (2,
(
n
2

)
+ 1) whose

existence is guaranteed by the Alon–Frankl result, and let yi = max{xi : x ∈ F}
for all i. Suppose that |F ′| >

(
n
2

)k/2, and let i, j be indices such that yi ≥ yj ≥ y`

for all ` 6∈ {i, j}. Since |F ′| =
∏k

i=1 yi, we have F ′|{i, j} = yiyj >
(
n
2

)
, which is a

contradiction.

It follows that the maximum size of such a family of ordered k-tuples is

max |F| =

(
n√
2

)k

+O(nk−1).

Another proof for this upper bound can be given by applying Shearer’s lemma [17].

It is trivial to find a construction achieving it, namely the family [m]k with m =

bn/
√

2c − 1.

This result suggests that the difficulty of the problem of the pairwise reverse-free

sets stems from the fact that this property settles some kind of qualitative require-

ment regarding the structure of the projections. Several papers [8, 9, 57, 58] dealt

with this kind of requirements regarding set families (or equivalently binary strings

representing their characteristic vectors), and it would be interesting to consider this

type of problems on families of ordered sets, too.

3.13 Conclusion, more problems

We determined the asymptotic behavior for F (n, 3) as n → ∞, and even an exact

formula whenever n is a power of 3. The order of F (n, k) for k fixed and n → ∞ is

trivially nk. We proved some upper and lower bounds for F (n, k), but the asymptotic,

let alone the exact formula, is still unknown.

Problem 59. Determine the asymptotic behavior of F (n, k) for fixed k and n→∞.

Similarly, we can use Lemma 48 with G(n, 2) = 2 for a lower bound, and (3.24)

together with the trivial estimate F (n, k) ≥
(
n
k

)
for an upper bound on G(n, k), the
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maximum size of a flip-full code,

2k/2 ≤ G(n, k) ≤
k!
(
n
k

)(
n
k

) = k!

but the exact asymptotic behavior is again unknown.

Even more interesting open problems concern permutations. We have proved the

following bounds, which we believe are far from the truth.

1

n2
(1.898 . . . )n ≤ F (n, n) ≤ n!

(1.686 · · ·+ o(1))n
,

1

8
(1.515 . . . )n ≤ G(n, n) ≤ n2n!

(1.898 . . . )n
.

Problem 60. Determine the asymptotic behavior of F (n, n) and G(n, n) as n→∞.

Open problems also remain in the area of codes with repetitions allowed. We

established the order of magnitude of F (n, k) for n fixed and k →∞, but it would be

interesting to investigate this quantity further.

Problem 61. Determine the asymptotic behavior of F (n, k) for n fixed and k →∞.

Finally, we would like to mention two further seemingly related open problems.

Two permutations σ and τ of [n] are colliding if there is an i with |σ(i)− τ(i)| = 1.

Let ρ(n) be the maximum cardinality of a set of pairwise colliding permutations.

Körner and Malvenuto [46] proved the lower bound ρ(n) > cn for c = 1.661 . . . and

also the upper bound ρ(n) ≤
(

n
bn/2c

)
, and showed that equality holds in the upper

bound for n = 1, 2, . . . , 7. They conjecture that equality holds for all n. The lower

bound was improved in [12], where it is proved that ρ(n) > cn with c = 1.8155 . . .

Sperner’s theorem states that G(2, n) =
(

n
bn/2c

)
. Körner conjectures [45] that

G(3, n) = G(2, n), i.e., the maximum number of n-tuples such that any two have

a reversed pair is the same for the ternary and the binary cases. Using Sperner ca-

pacities, an upper bound 2n is known (by Blokhuis [11] and by Calderbank, Frankl,

Graham, Li, and Shepp [15]).

64



Chapter 4

Product dimension of trees

4.1 Motivation and definition of product dimension

Efficient encoding (representation) of partially ordered sets is important in many

areas of computer science, particularly in object-oriented languages, databases, ma-

chine learning and knowledge representation ([54, 66, 1]). We need to represent

a poset (P,�) in a way that is both space efficient and makes it possible to quickly

answer queries such as “is x � y?”

A popular method of storing a poset is to view it as a directed acyclic graph and

store its adjacency matrix, or adjacency lists ([55]). However, depending on the class

of posets in question, one can often find an encoding function ϕ that makes it possible

to answer queries more efficiently than if the poset is stored in the straightforward

way described above.

As an example of such encoding, we can assign a vector (ϕ1(x), . . . , ϕk(x)) to each

x ∈ P in such a way that ϕi(x) ≤ ϕi(y) holds for all i if and only if x � y. In other

words, we embed (P,�) into a product of k chains. The well-known (Dushnik-Miller)

dimension of the partially ordered set (P,�), defined in [19], is the minimum k for

which this is possible.

Similar notions of dimension arise naturally in other categories as well. Often

we have a class C of objects (e.g., posets, digraphs, graphs, or some subfamilies of

these), a product-like operation ⊗ (for example, the usual categorical product), and

a subclass B ⊂ C of objects that we regard as “simple”, such that every object C ∈ C
can be embedded in a product ⊗ of elements of B. The number of elements of B that

are needed for this embedding can be regarded as a measure of complexity of C. For

examples of situations of this kind, and the different notions of dimension that arise

following this general recipe, see [56, 35, 69, 70].
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In this chapter, we deal with the same scenario in the context of undirected graphs.

The following definition was first introduced by Nešeťril and Pultr in [56].

Definition 62. [56] The product dimension (or Prague dimension) of a graph G, de-

noted dim(G), is the minimum number k such that G is an induced subgraph of a

tensor product of k complete graphs.

Equivalently, it is the minimum number of proper colorings ϕ1, ϕ2, . . . , ϕk such

that for every non-edge uv there is an index i with ϕi(u) = ϕi(v), and the colorings

distinguish the vertices in the sense that for every pair u, v there exists an index i

such that ϕi(u) 6= ϕi(u). And yet another way to define the same parameter is as the

minimum t such that we can assign distinct vectors τ(u) of length t to the vertices

u ∈ V (G) in such a way that uv ∈ E(G) if and only if τ(u) and τ(v) differ in all

coordinates. We will switch between these as needed. Figure 4.1 shows two examples

of such encoding.

This definition is not isolated, but rather a part of an active field of graph repre-

sentations (see [67] for a monograph on graph representations written from both

the mathematical and the computer science perspective). Especially various ver-

sions of intersection representation received a great deal of attention (see, for exam-

ple, [53, 25, 63]). Generally speaking, the aim is to assign sets of a specified kind

(such as intervals, boxes, or spheres in Euclidean space, etc.) to the vertices of the

graph in such a way that two vertices are adjacent if and only if the corresponding

sets intersect.

A concept of a different kind that is especially relevant in our context is that of

modular representation [24]. A representation modulo k is an assignment of a label

τ(v) ∈ {0, 1, . . . , k − 1} to each vertex v so that uv ∈ E(G) if and only if gcd(τ(u) −
τ(v), k) = 1. The representation number rep(G) of a graph G is the minimum k such

that G has a representation modulo k. If G is reduced (i.e., no two vertices have

the same neighborhood), then rep(G) is a product of distinct primes ([27]). If these

are p1, . . . , pt, then G can be embedded as an induced subgraph in Kp1 × · · · × Kpt,

so dim(G) ≤ t. On the other hand, if we know a product representation, we can

construct a modular representation using the Chinese remainder theorem. For many

reduced graphs, dim(G) is equal to the number of prime divisors of rep(G), but it is

not known whether this is always true. For details, see [28].

And finally, several natural generalizations of the concept of product dimension

66



were introduced in [47] by Körner and Monti, who also proved many results about

them.

4.2 Some previously known results

Each coloring ϕi in a product representation of a graph G forms an equivalence

relation Ei on the vertices ofG, and ∪Ei equals the set of non-edges ofG. In addition,

since the mapping into the product of complete graphs is injective, the relations

satisfy the additional requirement that for every pair (u, v), there is an i such that

(u, v) 6∈ Ei. The product dimension is the minimum t such that there is a set of t

equivalences with these properties. An easy example of such a set of equivalences

on a graph G with V (G) = {w1, . . . , wn} is obtained by introducing a proper coloring

ϕuv for each pair {u, v} 6∈ E(G) by

ϕuv(wi) =

{
0 if wi = u or wi = v,

i otherwise.

This proves that the dimension is well defined for every graph, although the upper

bound obtained here, dim(G) ≤
(
n
2

)
− |E(G)|, is generally not very good. For every

one of these equivalences, only one class has more than one element. One would

expect to be able to do better by using equivalences with more than one non-trivial

class, and with non-trivial classes that contain more than two elements. In fact,

Lovász, Nešeťril, and Pultr [52] showed that

dim(G) ≤ |V (G)| − 1.

Graphs with dimension equal to 1 are precisely the complete graphs. Nešeťril

and Pultr in [56] provided a polynomial-time characterization of graphs with dimen-

sion 2. However, for k ≥ 3 they provided a polynomial reduction of the problem

“Is dim(G) ≤ k?” to the k-colorability problem, proving the NP -completeness of the

former.

Let us note for future reference that the dimension of any star is equal to 2 (see

Figure 4.1 for an example of an encoding).

There are only very few classes of graphs for which the dimension is either known
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(1, 1) (2, 1) (3, 1)

(0, 0) (0, 0) (1, 0)

(0, 1) (1, 1) (2, 1)

Figure 4.1: Examples of product representation: an embedding of the star with 3
leaves into the product K4 ×K2 and an embedding of path of length 4 into K3 ×K2.

exactly or we at least have good estimates. In [52], Lovász, Nešeťril, and Pultr

used ingenious linear algebraic reasoning to prove the exact values for matchings,

paths, and some cycles. Our proof in Section 4.3 is modeled on their approach.

Křivka in [50] determined the dimension of the cycles C` for some more values of `,

and of the hypercubes Qk. And finally, Poljak, Pultr, and Rödl in [60] showed that

dim(K(n, k)) ∼ log log n holds for the Kneser graphs K(n, k) for k fixed and n→∞.

The connection to the dimension of posets not only provides motivation for the

concept, but is of a practical use as well. Füredi exploits it in [32] to give a short

proof of a result that originally appeared in [60] – an upper bound on the product

dimension of Kneser graphs. He provides a construction of the colorings ϕ1, ϕ2 . . . ,

using previously known bound on the dimension of the poset whose vertices are the

1- and (2k − 2)-subsets of [n], and the relation is inclusion.

Studying some simple graphs, such as trees, is a natural starting point in inves-

tigating the behavior of any graph parameter. It is a well-known fact that if P is a

tree-like poset, i.e., its covering graph is a tree, then dim(P ) = 2 [76]. The situation

is more complicated in our case.

The dimension of trees was first investigated by Poljak, and Pultr in [59] and later

by Alles in [2]. In both papers, the lower bounds use Theorem 63, proved by Lovász,

Nešeťril, and Pultr in [52].

Theorem 63 ([52]). If x1, . . . , xk are distinct elements of V (G) such that for some
y1, . . . , yk ∈ V (G), {xi, yi} ∈ E(G) for all i, and {xi, yj} 6∈ E(G) for i < j, then
dim G ≥ log2 k.
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When applied to trees, this yields dim(T ) ≥ log2(n− l+ 1), where n is the number

of vertices and l is the number of leaves. In Section 4.3 we will improve this bound

by proving a stronger version of Theorem 63.

The best upper bounds were proved in [2]. For a fixed tree T , let x be one of

the vertices in its center. Define Si = {y : d(x, y) = i} for i > 0, and put di =

max{deg(y) : y ∈ Si} if Si 6= ∅, and di = 1 otherwise. That is, di is the maximum

degree in the ball of radius i around one of the vertices in the center of T .

Theorem 64 ([2]). If T is a tree, then

dim(T ) ≤ dlog2 diam T e − 1 + dlog2 d0e+
∑
i≥1

dlog2(di − 1)e.

Instead of the balls Si around the center, one can use “generalized balls”, and get a

better upper bound. Define S ′0(x) = {x}. If S ′0(x), . . . , S ′k−1(x) are already defined, let

S ′k(x) be the set of y ∈ V (T ) such that deg(y) > 2, and if there is a vertex z ∈ V (T )

with d(x, z) < d(x, y), then either deg(z) = 2, or z ∈ S ′j(x) for some j < k. For i ≥ 0,

let d′i = max{deg(y) : y ∈ S ′k(x)} if S ′k 6= ∅, and 1 otherwise.

Theorem 65 ([2]). If T is a tree, then

dim(T ) ≤ dlog2 diam(T )e − 1 + dlog2 d
′
0e+

∑
i≥1

dlog2(d′i − 1)e.

In Section 4.4 we will provide another upper bound which is significantly better

for some trees.

4.3 Lower bound for trees, using linear algebra

For trees, we can somewhat relax the condition {xi, yj} 6∈ E(G) for i < j. In particu-

lar, we prove the following improvement of Theorem 63.

Theorem 66. Let P1, . . . , Pm be vertex disjoint paths in a tree T . If li is the length of Pi
and k =

∑k
i=1 li, then dim T ≥ dlog2 ke.

The proof is similar to the proof of Theorem 63 found in [52]. The matrix M is

constructed in the same way, but in this case we need more work to show that it is

nonsingular.
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Proof. Assign the labels xi and yi for 1 ≤ i ≤ k to the vertices of the paths in the

following way. Let P1 = z1 . . . zl1+1 and let xi = zi and yi = zi+1 for 1 ≤ i ≤ l1.

Continue with labeling P2. If P2 = zl1+2 . . . zl1+l2+2, let xi = zi+1 and yi = zi+2 for

l1 +1 ≤ i ≤ l1 + l2 +1. Proceed analogously for P3, etc. See Figure 4.2 for an example

of such labeling.

Let dim(T ) = d. Consider a representation ϕ1, . . . , ϕd, and for a vertex u, put

ϕ(u) = (ϕ1(u), . . . , ϕd(u)). Let S(d) be the family of all subsets of [d]. For a vec-

tor v = (v1, . . . , vd) ∈ Nd define vectors v̄, ṽ ∈ NS(d) whose entries are indexed by

elements of S(d) by putting

v̄(A) =
∏
i∈A

vi and ṽ(A) =
∏
i 6∈A

(−vi).

Let M be a matrix whose (i, j)-th entry Mij is equal to ϕ(xi) · ϕ̃(yj), where the dot

indicates the inner product. We have

ϕ(xi) · ϕ̃(yj) =
∑
A⊆[d]

(∏
`∈A

ϕ`(xi)
∏
i 6∈A

ϕ`(yj)

)
=

d∏
`=1

(ϕ`(xi)− ϕ`(yj)),

so Mij 6= 0 if and only if xi and yj are adjacent.

Let αi be coefficients such that
∑k

i=1 αiϕ(xi) = 0. Then, for a fixed j,

k∑
i=1

αi(ϕ(xi) · ϕ̃(yj)) =

(
k∑
i=1

αiϕ(xi)

)
· ϕ̃(yj) = 0.

That is, the linear combination of the rows ofM with the coefficients αi equals 0. IfM

is nonsingular, then αi = 0 for all i and thus ϕ(x1), . . . , ϕ(xk) are linearly independent

in NS(d), and hence

k ≤ 2d.

To prove that M is nonsingular, it suffices to prove the following claim. The biad-

jacency matrix of a bipartite graph with parts X and Y is a the (0, 1)-matrix with the

rows indexed by the elements of X and the columns indexed by the elements of Y,

whose (i, j)-th entry equals 1 if and only if the corresponding vertices are adjacent.
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x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

P2P1

T
x′1

x′2

x′3

x′4

x′5

y′1

y′2

y′3

y′4

y′5

T ′

M =


∗ 0 0 0 0
0 ∗ ∗ 0 0
0 0 ∗ 0 0
∗ 0 0 ∗ 0
0 0 0 0 ∗



Figure 4.2: An example illustrating the proof of Theorem 66. The zigzag edges
highlight the paths P1 and P2. Nonzero entries in the matrix M are denoted by stars.

Claim. There is exactly one way to pick k nonzero entries of M so that each row and

each column contains exactly one of them.

To prove this claim, replace the nonzero entries of M by 1’s. The new matrix is the

biadjacency matrix of a bipartite graph T ′, with V (T ′) = X ∪ Y for X = {x′1, . . . , x′k}
and Y = {y′1, . . . , y′k}, and with E(T ′) = {x′iy′j : xiyj ∈ E(T )}. The edges of T ′

are in one-to-one correspondence with the nonzero positions of M . The problem is

equivalent to proving that T ′ has exactly one perfect matching.

Suppose that T ′ has a cycle D′ = v1v2 . . . vs, where vs = v1. We may choose the

labels so that vi ∈ X for odd i, and vi ∈ Y for even i. Every vertex in T corresponds

to at most two vertices of T ′, one in each part. Let D be the subgraph of T that we

obtain by identifying the pairs of vertices of D′ that correspond to a single vertex

in T . Since i and j must have different parity whenever we identify vi and vj, D

cannot be a tree, a contradiction.

It follows that T ′ is a forest. It has at least one perfect matching – take the edges

that correspond to the elements on the diagonal of M . On the other hand, if a forest

has a perfect matching, it is unique. 2
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Example 67. Consider the tree T depicted in Figure 4.2. By Theorem 66, dim(T ) ≥
dlog2 5e = 3, but Theorem 63 only tells us that dim(T ) ≥ log2 4 = 2.

4.4 Upper bound for trees, using reflections

Let G1 be a subgraph of H, and let G2 be the graph induced by V (H) \ V (G1). Let

v1, . . . , vt be the vertices of G2. Create a new graph H ′ by taking another copy of

G2 and attaching it to G1 the same way as the original G2 is attached. Formally,

V (H ′) = V (H) ∪W , where W = {w1, . . . , wt} is a set of vertices disjoint from V (H),

and the edges of H ′ are given by the following:

• H is an induced subgraph of H ′,

• wiwj ∈ E(H ′) whenever vi, vj ∈ V (G2) and vivj ∈ E(H), and

• wiu ∈ V (H ′) whenever vi ∈ V (G2), u ∈ V (G1), and viu ∈ E(H).

We will call the resulting graph H ′ the reflection of H around G1.

The following lemma is a generalization of the construction used in [52] to provide

an upper bound for the dimension of paths. The upper bound from [52] is obtained

by repeateded reflections with G1 being an endpoint of the path.

Lemma 68. Let G1 be a subgraph of H such that the graph (V (H), E(H) \E(G1)) is a
forest. If H ′ is the reflection of H around G1, then dim(H ′) ≤ dim(H) + 1.

Proof. We use the notation introduced in the first paragraph of this section. Find an

encoding of H. Assign the code of the corresponding vi to each wi, and add an extra

coordinate to all codes: for wi, append the code by 0 if the distance of wi from G1 is

even, and by 1 otherwise. For vi, add 1 if the distance is even, and 0 otherwise. For

the vertices ui, put distinct numbers other than 0 and 1 at the end of each code. This

is a valid encoding of H ′. 2

Theorem 69 ([52]). If P is a path of length k, then dim(P ) = dlog2 ke.

Proof. The encoding of the path of length 4 by vectors with two coordinates is given

in Figure 4.1. Reflect it around its endpoints and use Lemma 68 repeatedly until we
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T (1, 4, 3) T (1, 4, 3, 1, 1)

x2 x1 x0

T (1, 4, 3, 5, 1)

T (1, 4, 3, 3)

x2

Figure 4.3: An example of the process described in the proof of Lemma 71. To
obtain an encoding of T (1, 4, 3, 3), start with an encoding of T (1, 4, 3) and use two
reflections around the path x1x2 to obtain an encoding of T (1, 4, 3, 5, 1). This graph
has T (1, 4, 3, 3) as an induced subgraph.

have a path of the required length. This proves the upper bound. The lower bound

is an easy consequence of Theorem 66. 2

For a tree T , let x be one of the vertices in its center. Let r be the radius of T . For

0 ≤ i ≤ r, let δi be the maximum degree among all vertices u such that d(u, x) = r−i.
That is, for dj defined in Section 4.2, δi = dr−i. Also, let S = {2i : i ∈ N}.

Theorem 70. dim(T ) ≤ 2 + dlog2(δr)e+
∑

i∈S,2≤i<r

dlog2(δi)e+
∑

i 6∈S,3≤i<r

dlog2(δi − 1)e.

If G is an induced subgraph of a graph H, then dim(G) ≤ dim(H). We will use this

trivial but useful fact multiple times, sometimes without referring to it explicitly.

In particular, it suffices to prove Lemma 71 in order to prove Theorem 70. In

the following paragraphs, T (δ0, δ1, . . . , δr) is a rooted tree with the root x, all other

vertices in distance at most r from x, and with all vertices in distance r − i from x

having degree δi (hence in particular, δ0 = 1).

Lemma 71. If r ∈ N, and δ0, δ1, . . . , δr is a list of positive integers with δ0 = 1 and
δ1, . . . , δr−1 6= 1, then

dim(T (δ0, δ1, . . . , δr)) ≤ 2 + dlog2(δr)e+
∑

i∈S,2≤i<r

dlog2(δi)e+
∑

i 6∈S,3≤i<r

dlog2(δi − 1)e.

73



Proof. We will use induction on r. For r = 1, the tree in question is isomorphic to the

star K1,δ1. We can encode it with two colorings.

Let s be the largest power of 2 such that s < r. By induction hypothesis, we have

an encoding of T (δ0, δ1, . . . , δs) with
∑

j∈S,j≤sdlog2(δi)e+
∑

j 6∈S,3≤j≤sdlog2(δi − 1)e+ 2

coordinates. The center of T (δ0, δ1, . . . , δs) consists of one vertex; call it x0. Let

x0 . . . xs a path from x0 to one of the leaves. Delete all the vertices y 6∈ {x1, . . . , xs}
for which the path from y to x0 goes through the vertex x1. Now we have a tree T ′

with center {x0}, one path of length s starting at x0, and δs − 1 pairwise isomorphic

subtrees incident to x0. Using our notation and designating xs as the root, we have

T ′ = T (δ0, . . . , δs, 1, 1, . . . , 1), where the number of the 1’s following δs is s.

We will successively reflect the tree around portions of the fixed path x0 . . . xs to

encode first T (δ0, . . . , δs, δs+1, 1, 1, . . . , 1), then T (δ0, . . . , δs, δs+1, δs+2, 1, . . . , 1), etc.

First reflect T ′ around the subpath x1 . . . xs. This increases the degree of x1 to 3.

A total number of dlog2(δs+1 − 1)e reflections suffices to make the degree of x1

greater than or equal to δs+1, and the same number of additional colorings suf-

fices to color the resulting tree, by Lemma 68. Let T ′′ be the resulting tree, T ′′ =

T (δ0, . . . , δs, δs+1, 1, . . . , 1), where the number of 1’s at the end is s−1. Use dlog2(δs+2−
1)e reflections to get an encoding of T (δ0, . . . , δs, δs+1, δs+2, 1, . . . , 1). Continue in a

similar fashion until we have an encoding of T (δ0, . . . , δr−1, 1, . . . , 1).

In the last step, we again reflect the graph sufficiently many times to increase the

degree of the appropriate vertex (in this case, it is the vertex x defined above), and

then delete the remaining vertices of the path x0 . . . xs that still have degrees 1 or 2

(if there are any left). This might decrease the degree of x by 1, so in this step we

need dlog2(δr)e reflections. 2

This bound is at least as good as the one given by Theorem 64 whenever δ1 > 2,

or for some i ∈ S, δi 6∈ {2j + 1 : j ∈ N}. The bounds in Theorems 64 and 65 are the

same whenever T has no vertices of degree 2. So in particular, if T has no vertices

of degree 2, the bound from Theorem 70 is at least as good as both aforementioned

bounds.

In many cases, the improvement is as large as dlog2 re (where r is again the radius

of T ), e.g., for the balanced 4-regular tree T (4, 4, . . . , 4).
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4.5 Exact values

In [52], Theorem 63 was used together with the upper bound obtained by multiple

reflections around endpoints to determine the dimension of paths (see Theorem 69).

These methods can be used to determine the dimension of many other graphs as

well.

As an example of a family where we can successfully apply the same ideas, let

R2 = {P5}, where P5 is the path of length 4. For k > 2, the set Rk will be defined

inductively as the set of all trees T that are not stars and that can be produced by

reflecting some T ′ ∈ Rk−1 around one of its vertices.

Theorem 72. If T ∈ Rk, then dim(T ) = k.

Proof. Let n(G) and `(G) be the number of vertices and the number of leaves of G

respectively. Let ck = min{n(G) − `(G) + 1 : G ∈ Rk}. We have ck ≥ 2ck−1 − 2 =

2k−1 + 2. By Theorem 63, dim(G) ≥ dlog cke = k. The upper bound follows from

Lemma 68. 2

For other trees, Theorem 63 is not powerful enough to determine the exact values

of product dimension, but Theorem 66 is. For an example of such family, fix a k ≥ 2

and take two vertex-disjoint paths P1 and P2 of lengths s1 and s2 respectively, so that

s1 ≥ 2 and s2 ≥ 2, and s1 + s2 = 2k + 1. Select internal vertices u ∈ P1 and v ∈ P2

and connect them with an edge. Let Dk be the family of all the graphs that we can

obtain in this way.

Proposition 73. If T ∈ Dk, then dim(T ) = k + 1.

Proof. The vertex u divides P1 in two portions. Let u1u2 . . . u be the longer one.

Similarly, let v1v2 . . . v be the longer portion of P2. The path u1u2 . . . uv . . . v2v1 has

length at most 2k, so we can encode it with k colorings, by Theorem 69. If we reflect

it around the edge uv, the resulting graph has dimension at most k+1, by Lemma 68,

and has T as an induced subgraph.

The lower bound follows from Theorem 66. 2
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4.6 Odd dimension

Let us finish the chapter with a slight detour to another related parameter, the odd
dimension.

Definition 74. An odd representation is an assignment of sets to the vertices of G

such that uv ∈ E(G) for u 6= v if and only if the corresponding sets have an odd-sized

intersection. The odd dimension θodd(G) of a graph G is the minimum t such that

there exists an odd representation of G with subsets of [t].

It is convenient to consider the characteristic vectors of the sets instead of the sets

themselves. An odd representation is then an assignment of binary vectors ϕ(x) to

the vertices x in such a way that ϕ(x) · ϕ(y) = 1 if and only if xy ∈ E(G). Here the

dot denotes the dot product taken modulo 2. Unlike product representation, we do

not require that the vectors be unique.

This parameter was defined in [21] by Eaton and Grable, who proved that

n−
√

2n− dlog ne < θodd(G) ≤ n− 1

holds for almost all graphs, while the upper bound holds for all graphs.

Both Theorem 63 and 66 can be adapted for odd dimension as well.

Theorem 75. If x1, . . . , xk are distinct vertices of G and y1, . . . , yk are some vertices
such that xiyi ∈ E(G) for all i, xiyj 6∈ E(G) for i < j, and moreover xi 6= yj for i < j,
then θodd(G) ≥ k.

Proof. Suppose that θodd(G) = t, and for every vertex x, let ϕ(x) = (ϕ1(x), . . . , ϕt(x))

be the characteristic vector of the odd representation. Let M be the matrix defined

by Mi,j = ϕ(xi) · ϕ(yj), where the dot denotes the dot product modulo 2. We have

Mi,j = 1 if and only if either xiyj ∈ E(G), or xi = yj and ϕ(xi) has an odd number

of 1’s.

We will show that the vectors ϕ(xi) are linearly independent. As a consequence,

we will get k ≤ t. Let αi be coefficients such that
∑
αiϕ(xi) = 0. For any fixed j, we

have

0 =

(∑
i

αiϕ(xi)

)
· ϕ(yj) =

∑
i

αi(ϕ(xi) · ϕ(yj)).
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That is,
∑

i αiMi,j = 0 for any fixed j. But M is lower diagonal, and hence its rows

are linearly independent. It follows that αi = 0 for all i. 2

Corollary 76. For every k, θodd(Pk+1) = k. For the matching kK2 of size k, we have
θodd(kK2) = k.

Proof. The statement about paths follows from Theorem 75 together with the fact

that θodd(G) ≤ n− 1 for all graphs.

The lower bound for the matchings follows from Theorem 75 by labeling one end-

point of the i-th edge of the matching xi and the other endpoint yi. For the upper

bound, assign the set {i} to both endpoints of the i-th edge, for all i. 2

Theorem 77. If T is a tree and P1, . . . , Pk are vertex disjoint paths in T of lengths
s1, . . . , sk respectively, then θodd(T ) ≥

∑
si.

Proof. Let s =
∑
si. Label the paths with the labels x1, . . . , xs and y1, . . . , ys like in

the proof of Theorem 66. Define a matrix M by Mi,j = ϕ(xi) · ϕ(yj) (again, the dot

product is modulo 2). Like in the proof of Theorem 66, we consider the bipartite

graph T ′ defined by the biadjacency matrix M , and wish to prove that T ′ has only

one perfect matching. We have to be a little more careful here, since it is well possible

that xi and yj are two labels for the same vertex x, and ϕ(x) has an odd weight. In

that case the corresponding vertices x′i and y′j of the bipartite graph are adjacent. It

is therefore no longer true that T ′ is a forest. We will prove that there is only one

perfect matching, nevertheless.

We will proceed by induction on s. The subgraph of T induced by all vertices that

have been labeled (by some xi, or yj, or both) is a forest. Find a leaf u in this forest.

Because of the way we assigned the labels, u has only one label assigned to it, say xi
(the situation is completely analogous if it is yj for some j). Any perfect matching

then contains the edge xiyi, and it does not contain any other edge incident with yi.

We can therefore delete the i-th row and column of M . By induction hypothesis,

there is only one perfect matching on the rest of T ′. 2
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[57] B. PATKÓS, l-trace k-Sperner families of sets, J. Combin. Theory Ser. A, 116
(2009), pp. 1047–1055.

[58] , Traces of uniform families of sets, Electron. J. Combin., 16 (2009), pp. Note
8, 5.

[59] S. POLJAK AND A. PULTR, On the dimension of trees, Discrete Mathematics, 34
(1981), pp. 165–171.
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[71] P. TURÁN, On the theory of graphs, Colloquium Math., 3 (1954), pp. 19–30.

[72] V. N. VAPNIK AND A. Y. CHERVONENKIS, On the uniform convergence of relative
frequencies of events to their probabilities, Theory of Probab. and its Applications,
16 (1971), pp. 264–280.

[73] V. G. VIZING, Coloring the vertices of a graph in prescribed colors, Diskret. Analiz,
(1976), pp. 3–10, 101.

[74] M. VOIGT, List colourings of planar graphs, Discrete Math., 120 (1993), pp. 215–
219.

[75] W. WANG AND X. LIU, List-coloring based channel allocation for open-spectrum
wireless networks, in Vehicular Technology Conference, 2005. VTC-2005-Fall.
2005 IEEE 62nd, vol. 1, 28-25 2005, pp. 690 – 694.

[76] E. S. WOLK, A note on “The comparability graph of a tree”, Proc. Amer. Math.
Soc., 16 (1965), pp. 17–20.

83


	Chapter 1 Introduction
	List colorings with unequal list sizes
	Reverse-free codes and permutations
	Product dimension of trees
	Basic definitions

	Chapter 2  List colorings with unequal list sizes
	Choosability and balanced complete bipartite graphs
	Average list sizes and planar graphs
	Sum choice number, balanced complete bipartite graphs
	Sum choice number does not grow with average degree
	Upper bound, there are sufficient short lists
	Lower bound, much shorter lists are not sufficient
	For fixed a, the limit as q approaches infinity exists
	Graphs with large independent sets

	Chapter 3 Reverse-free codes and permutations
	Motivation and main concepts
	Recurrences
	Small constructions
	An iterated construction of reverse-free triple systems
	An upper bound on reverse-free triple systems
	Reverse-free triple systems: The case of repetitions
	A related problem: Codes with many flips
	Long permutations
	Better upper bounds 
	Small alphabets
	Hypergraph problems
	Traces
	Conclusion, more problems

	Chapter 4 Product dimension of trees
	Motivation and definition of product dimension
	Some previously known results
	Lower bound for trees, using linear algebra
	Upper bound for trees, using reflections
	Exact values
	Odd dimension

	References

