学位论文详细信息
Why deep neural networks for function approximation
Neural networks;Deep learning
Liang, Shiyu ; Srikant ; Rayadurgam
关键词: Neural networks;    Deep learning;   
Others  :  https://www.ideals.illinois.edu/bitstream/handle/2142/99417/LIANG-THESIS-2017.pdf?sequence=1&isAllowed=y
美国|英语
来源: The Illinois Digital Environment for Access to Learning and Scholarship
PDF
【 摘 要 】

Recently there has been much interest in understanding why deep neural networks are preferred to shallow networks. We show that, for a large class of piecewise smooth functions, the number of neurons needed by a shallow network to approximate a function is exponentially larger than the corresponding number of neurons needed by a deep network for a given degree of function approximation. First, we consider univariate functions on a bounded interval and require a neural network to achieve an approximation error of ε uniformly over the interval. We show that shallow networks (i.e., networks whose depth does not depend on ε) require Ω(poly(1/ε)) neurons while deep networks (i.e., networks whose depth grows with 1/ε) require O(polylog(1/ε)) neurons. We then extend these results to certain classes of important multivariate functions. Our results are derived for neural networks which use a combination of rectifier linear units (ReLUs) and binary step units, two of the most popular types of activation functions. Our analysis builds on a simple observation: the multiplication of two bits can be represented by a ReLU.

【 预 览 】
附件列表
Files Size Format View
Why deep neural networks for function approximation 895KB PDF download
  文献评价指标  
  下载次数:21次 浏览次数:7次