科技报告详细信息
Wireless Indoor Location Estimation Based on Neural Network RSS Signature Recognition (LENSR).
Derr, K. ; Manic, M.
Technical Information Center Oak Ridge Tennessee
关键词: Neural networks;    Wireless communication;    Monitoring;    Algorithms;    Mapping;   
RP-ID  :  DE2008935448
学科分类:工程和技术(综合)
美国|英语
来源: National Technical Reports Library
PDF
【 摘 要 】

Location Based Services (LBS), context aware applications, and people and object tracking depend on the ability to locate mobile devices, also known as localization, in the wireless landscape. Localization enables a diverse set of applications that include, but are not limited to, vehicle guidance in an industrial environment, security monitoring, self-guided tours, personalized communications services, resource tracking, mobile commerce services, guiding emergency workers during fire emergencies, habitat monitoring, environmental surveillance, and receiving alerts. This paper presents a new neural network approach (LENSR) based on a competitive topological Counter Propagation Network (CPN) with k-nearest neighborhood vector mapping, for indoor location estimation based on received signal strength. The advantage of this approach is both speed and accuracy. The tested accuracy of the algorithm was 90.6% within 1 meter and 96.4% within 1.5 meters. Several approaches for location estimation using WLAN technology were reviewed for comparison of results.

【 预 览 】
附件列表
Files Size Format View
DE2008935448.pdf 462KB PDF download
  文献评价指标  
  下载次数:18次 浏览次数:20次