期刊论文详细信息
Radiation Oncology | |
Dosimetric impact of deep learning-based CT auto-segmentation on radiation therapy treatment planning for prostate cancer | |
Katia Parodi1  Minglun Li2  Maria Kawula2  Dinu Purice3  Christopher Kurz3  Guillaume Landry3  Claus Belka4  Gerome Vivar5  Seyed-Ahmad Ahmadi5  | |
[1] Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany;Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany;Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany;Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany;Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany;German Cancer Consortium (DKTK), Munich, Germany;German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-Universität München, Planegg, Germany; | |
关键词: 3D U-Net; Automatic segmentation; Radiation therapy; Prostate cancer; Neural networks; Deep learning; | |
DOI : 10.1186/s13014-022-01985-9 | |
来源: Springer | |