期刊论文详细信息
Radiation Oncology
Dosimetric impact of deep learning-based CT auto-segmentation on radiation therapy treatment planning for prostate cancer
Katia Parodi1  Minglun Li2  Maria Kawula2  Dinu Purice3  Christopher Kurz3  Guillaume Landry3  Claus Belka4  Gerome Vivar5  Seyed-Ahmad Ahmadi5 
[1] Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany;Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany;Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany;Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany;Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany;German Cancer Consortium (DKTK), Munich, Germany;German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-Universität München, Planegg, Germany;
关键词: 3D U-Net;    Automatic segmentation;    Radiation therapy;    Prostate cancer;    Neural networks;    Deep learning;   
DOI  :  10.1186/s13014-022-01985-9
来源: Springer
PDF
【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202202174433309ZK.pdf 2951KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:11次