学位论文详细信息
Ultracold atoms in flexible holographic traps
Atoms;Low temperatures;Holography;Bose-Einstein condensation;Light modulators
Bowman, David ; Cassettari, Donatella ; Cassettari, Donatella
University:University of St Andrews
Department:Physics & Astronomy (School of)
关键词: Atoms;    Low temperatures;    Holography;    Bose-Einstein condensation;    Light modulators;   
Others  :  https://research-repository.st-andrews.ac.uk/bitstream/handle/10023/16293/DavidBowmanPhDThesis.pdf?sequence=2&isAllowed=y
来源: DR-NTU
PDF
【 摘 要 】

This thesis details the design, construction and characterisation of an ultracold atoms system, developed in conjunction with a flexible optical trapping scheme which utilises a Liquid Crystal Spatial Light Modulator (LC SLM). The ultracold atoms system uses a hybrid trap formed of a quadrupole magnetic field and a focused far-detuned laser beam to form a Bose-Einstein Condensate of 2×10⁵ ⁸⁷Rb atoms. Cold atoms confined in several arbitrary optical trapping geometries are created by overlaying the LC SLM trap on to the hybrid trap, where a simple feedback process using the atomic distribution as a metric is shown to be capable of compensating for optical aberrations.Two novel methods for creating flexible optical traps with the LC SLM are also detailed, the first of which is a multi-wavelength technique which allows several wavelengths of light to be smoothly shaped and applied to the atoms. The second method uses a computationally-efficient minimisation algorithm to create light patterns which are constrained in both amplitude and phase, where the extra phase constraint was shown to be crucial for controlling propagation effects of the LC SLM trapping beam.

【 预 览 】
附件列表
Files Size Format View
Ultracold atoms in flexible holographic traps 12946KB PDF download
  文献评价指标  
  下载次数:26次 浏览次数:63次