学位论文详细信息
Coordinated Operation of Distributed Energy Resources in Renewables Based Microgrids under Uncertainties
Microgrid;energy storage systems;demand response;renewable energy;unit commitment;uncertainty;Electrical and Computer Engineering
Alharbi, Walied
University of Waterloo
关键词: Microgrid;    energy storage systems;    demand response;    renewable energy;    unit commitment;    uncertainty;    Electrical and Computer Engineering;   
Others  :  https://uwspace.uwaterloo.ca/bitstream/10012/8186/4/Alharbi_Walied.pdf
瑞士|英语
来源: UWSPACE Waterloo Institutional Repository
PDF
【 摘 要 】

In recent years, the share of renewable energy sources (RESs) has been increasing in the electricity generation mix with a mandate to reduce greenhouse gas emissions that are released from burning fossil fuels. Indeed, a large share of electricity from renewable resources is required to de-carbonize the electricity sector. With the evolution of smart grids and microgrids, effective and efficient penetration of renewable generation such as wind and solar can possibly be attained. However, the intermittent nature of wind and solar generation makes microgrid operation and planning a complex problem and there is a need for a flexible grid to cope with the variability and uncertainty in their generation profiles.This research focuses on the coordination of distributed energy resources, such as energy storage systems (ESSs) and demand response (DR) to present an efficient solution towards improving the flexibility of microgrids, and supporting high levels of renewables generation.The overall goal of this research is to examine the influence of coordinated operation of ESS and DR on microgrid operations in the presence of high penetration levels of renewable generation.Deterministic and stochastic short-term operational planning models are developed to analyze the effects of coordinating ESS and DR, vis-à-vis their independent operation, on microgrids with high renewable generation. Special focus is on operation costs, scheduling and dispatching of controllable distributed generators, and levels of renewable generation. A set of valid probabilistic scenarios is considered for the uncertainties of load, and intermittency in wind and solar generation sources. The numerical results considering a benchmark microgrid indicate that coordinated operation of ESS and DR is beneficial in terms of operation costs, vis-à-vis their independent presence in the microgrid, when there is sufficient renewable generation. The coordinated operation reduces the risk in scheduling and increases the flexibility of the microgrid in supporting high levels of renewable generation.

【 预 览 】
附件列表
Files Size Format View
Coordinated Operation of Distributed Energy Resources in Renewables Based Microgrids under Uncertainties 1230KB PDF download
  文献评价指标  
  下载次数:17次 浏览次数:71次