One of the challenges increasingly facing intelligence analysts, along with professionals in many other fields, is the vast amount of data which needs to be reviewed and converted into meaningful information, and ultimately into rational, wise decisions by policy makers. The advent of the world wide web (WWW) has magnified this challenge. A key hypothesis which has guided us is that threats come from ideas (or ideology), and ideas are almost always put into writing before the threats materialize. While in the past the 'writing' might have taken the form of pamphlets or books, today's medium of choice is the WWW, precisely because it is a decentralized, flexible, and low-cost method of reaching a wide audience. However, a factor which complicates matters for the analyst is that material published on the WWW may be in any of a large number of languages. In 'Identification of Threats Using Linguistics-Based Knowledge Extraction', we have sought to use Latent Semantic Analysis (LSA) and other similar text analysis techniques to map documents from the WWW, in whatever language they were originally written, to a common language-independent vector-based representation. This then opens up a number of possibilities.