In the process of dispositioning nuclear materials into storage, the use of a robot eliminates the safety risks to humans and increases productivity. The current process of processing typically uses humans to handle the hazardous materials using gloves through glove-ports. This process is not only dangerous, but also costly, because humans can only be subjected to limited exposure to nuclear materials due to the actual Occupational Radiation Exposure (ORE) and thus have a fixed amount of dedicated workload per unit time. Use of robotics reduces ORE to humans and increases productivity. The Robotics Research Group at the University of Texas at Austin has created a simulation model of a conceptual application that uses a robot inside the glovebox to handle hazardous materials for lathe machining process operations in cooperation with Los Alamos National Laboratories (LANL). The actions of the robot include preparing the parts for entry into the box, weighting the parts, positioning the parts into the headstock chuck of the lathe, handling the subsequent processed parts, changing and replacing the lathe tools and chuck assemblies are necessary to process the material. The full three-dimensional geometric model of the simulation demonstrates the normal expected operation from beginning to end and verifies the path plans for the robot. The emphasis of this paper is to report additional findings from the simulation model, which is currently being expanded to include failure mode analysis, error recovery, and other what-if scenarios involved in unexpected, or unplanned, operation of the robot and lathe process inside of the glovebox.