科技报告详细信息
GaInNAs Structures Grown by MBE for High-Efficiency Solar Cells: Final Report; 25 June 1999--24 August 2002
Tu, C. W.
National Renewable Energy Laboratory (U.S.)
关键词: Digital-Alloy;    Photoluminescence (Pl);    Alloys;    Pv;    Solar Cells;   
DOI  :  10.2172/15004566
RP-ID  :  NREL/SR-520-34568
RP-ID  :  AC36-99-GO10337
RP-ID  :  15004566
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

The focus of this work is to improve the quality of GaInNAs by advanced thin-film growth techniques, such as digital-alloy growth techniques and migration-enhanced epitaxy (MEE). The other focus is to further investigate the properties of such materials, which are potentially beneficial for high-efficiency, multijunction solar cells. 400-nm-thick strain-compensated Ga0.92In0.08As/GaN0.03As0.97 short-period superlattices (SPSLs) are grown lattice-matched to GaAs substrates. The photoluminescence (PL) intensity of digital alloys is 3 times higher than that of random alloys at room temperature, and the improvement is even greater at low temperature, by a factor of about 12. The room-temperature PL intensity of the GaInNAs quantum well grown by the strained InAs/GaN0.023As SPSL growth mode is higher by a factor 5 as compare to the continuous growth mode. The SPSL growth method allows for independent adjustment of the In-to-Ga ratio without group III competition. MEE reduces the low-energy tail of PL, and PL peaks become more intense and sharper. The twin peaks photoluminescence of GaNAs grown on GaAs was observed at room temperature. The peaks splitting increase with increase in nitrogen alloy content. The strain-induced splitting of light-hole and heavy-hole bands of tensile-strained GaNAs is proposed as an explanation of such behavior.

【 预 览 】
附件列表
Files Size Format View
15004566.pdf 406KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:30次