科技报告详细信息
Multi-Layer Perceptrons and Support Vector Machines for Detection Problems with Low False Alarm Requirements: an Eight-Month Progress Report
Chen, B ; Hickling, T ; Krnjajic, M ; Hanley, W ; Clark, G ; Nitao, J ; Knapp, D ; Hiller, L ; Mugge, M
关键词: CL;   
DOI  :  10.2172/922310
RP-ID  :  UCRL-TR-227939
PID  :  OSTI ID: 922310
Others  :  TRN: US200806%%223
美国|英语
来源: SciTech Connect
PDF
【 摘 要 】

In this project, the basic problem is to automatically separate test samples into one of two categories: clean or corrupt. This type of classification problem is known as a two-class classification problem or detection problem. In what follows, we refer to clean examples as negative examples and corrupt examples as positive examples. In a detection problem, a classifier decision on any one sample can be grouped into one of four decision categories: true negative, true positive, false negative and false positive. These four categories are illustrated by Table 1. True negatives and true positives are cases where the classifier has made the correct decision. False positives are cases where the classifier decides positive when the true nature of the sample was negative, and false negatives are cases where the classifier decides negative when the sample was actually positive. To evaluate the performance of a classifier, we run the classifier on all the samples of a data set and then count all the instances of true negatives, true positives, false negatives, and false positives. All of the performance metrics in this report are then formed from a combination of these four basic decision categories.

【 预 览 】
附件列表
Files Size Format View
RO201705190002981LZ 636KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:101次