JOURNAL OF ALGEBRA | 卷:318 |
Parabolic Kazhdan-Lusztig R-polynomials for Hermitian symmetric pairs | |
Article | |
Brenti, Francesco | |
关键词: Coxeter groups; Kazhdan-Lusztig theory; Hermitian symmetric pairs; | |
DOI : 10.1016/j.jalgebra.2007.08.001 | |
来源: Elsevier | |
【 摘 要 】
We give explicit combinatorial product formulas for the parabolic Kazhdan-Lusztig R-polynomials of Hermitian symmetric pairs. Our results imply that all the roots of these polynomials are (either zero or) roots of unity, and complete those in [F. Brenti, Kazhdan-Lusztig and R-polynomials, Young's lattice, and Dyck partitions, Pacific J. Math. 207 (2002) 257-286] on Hermitian symmetric pairs of type A. As an application of our results, we derive explicit combinatorial product formulas for certain sums and alternating sums of ordinary Kazhdan-Lusztig R-polynomials. (c) 2007 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2007_08_001.pdf | 190KB | download |