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Abstract

We give explicit combinatorial product formulas for the parabolic Kazhdan–Lusztig R-polynomials of
Hermitian symmetric pairs. Our results imply that all the roots of these polynomials are (either zero or) roots
of unity, and complete those in [F. Brenti, Kazhdan–Lusztig and R-polynomials, Young’s lattice, and Dyck
partitions, Pacific J. Math. 207 (2002) 257–286] on Hermitian symmetric pairs of type A. As an application
of our results, we derive explicit combinatorial product formulas for certain sums and alternating sums of
ordinary Kazhdan–Lusztig R-polynomials.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In their fundamental paper [13] Kazhdan and Lusztig defined, for any Coxeter group W ,
a family of polynomials, indexed by pairs of elements of W , which have become known as the
Kazhdan–Lusztig polynomials of W (see, e.g., [11, Chapter 7] or [2, Chapter 5]). These polyno-
mials play an important role in several areas of mathematics, including the algebraic geometry
and topology of Schubert varieties and representation theory (see, e.g., [2, Chapter 5], and the
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references cited there). In order to prove the existence of these polynomials Kazhdan and Lusztig
introduced another family of polynomials, usually called the R-polynomials, whose knowledge
is equivalent to that of the Kazhdan–Lusztig polynomials.

In 1987 Deodhar [7] introduced parabolic analogues of all these polynomials. These parabolic
Kazhdan–Lusztig and R-polynomials reduce to the ordinary ones for the trivial parabolic sub-
group of W and are also related to them in other ways (see, e.g., Proposition 2.4 below). Besides
these connections the parabolic polynomials also play a direct role in several areas including the
theories of generalized Verma modules [6], tilting modules [15,16], quantized Schur algebras
[19], Macdonald polynomials [9,10], Schubert varieties in partial flag manifolds [12], and in the
representation theory of the Lie algebra gln [14].

The purpose of this work is to study the parabolic Kazhdan–Lusztig R-polynomials for Her-
mitian symmetric pairs. More precisely, we give explicit combinatorial product formulas for
these polynomials. These imply, in particular, that all the roots of these polynomials are (either
zero or) roots of unity. Some of these results are used in [5] to obtain explicit combinatorial
formulas for the parabolic Kazhdan–Lusztig polynomials.

The organization of the paper is as follows. In the next section we recall definitions, no-
tation and results that are used in the rest of this work. In Section 3 we study the parabolic
R-polynomials of Hermitian symmetric pairs. We obtain two main combinatorial formulas for
them, one in terms of signed permutations and one in terms of lattice paths. As an application
of our results, we derive combinatorial closed product formulas for certain sums and alternating
sums of ordinary Kazhdan–Lusztig R-polynomials.

2. Preliminaries

In this section we collect some definitions, notation and results that are used in the rest of

this work. We let P def= {1,2,3, . . .} and N def= P ∪ {0}. For m,n ∈ N, m � n, we let [n,m] def=
{n,n + 1, . . . ,m − 1,m} and [n] def= [1, n] (where [0] def= ∅). The cardinality of a set A will be
denoted by |A|.

Given a set T we let S(T ) be the set of all bijections π :T → T , and Sn
def= S([n]). If σ ∈ Sn

then we write σ in disjoint cycle form (see, e.g., [17, p. 17]) and we usually omit writing the
1-cycles of σ . So, for example, if σ = (9,7,1,3,5)(2,6) then σ(1) = 3, σ(2) = 6, σ(3) = 5,

σ(4) = 4, etc. Given σ, τ ∈ Sn we let στ
def= σ ◦τ (composition of functions) so that, for example,

(1,2)(2,3) = (1,2,3).
We follow Chapter 3 of [17] for poset notation and terminology. In particular, given a poset

(P,�) and u,v ∈ P we let [u,v] def= {z ∈ P : u � z � v} and call this an interval of P . We say
that v covers u, denoted u � v (or, equivalently, that u is covered by v) if |[u,v]| = 2. We say
that u,v ∈ P are comparable if either u � v or v � u. If P has a minimum element, denoted 0̂,
then we call a subset of the form [0̂, u], for u ∈ P , a lower interval of P . Given any Q ⊆ P we
will always consider Q as a poset with the partial ordering induced by P .

We follow §7.2 of [18] for any undefined notation and terminology concerning partitions. Let

H def= {(i, j) ∈ P2: i � j}, with the ordering induced by the product ordering on P2. We call the
finite order ideals of H shifted partitions. We denote by S the set of all finite order ideals of H.
We will always assume that S is partially ordered by set inclusion. It is well known that this
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Fig. 1.

makes S into a distributive lattice. Note that there is an obvious bijection between partitions into
distinct parts and shifted partitions, given by

(λ1, . . . , λk) ↔ {
(i, j) ∈ P2: 1 � i � k, i � j � λi + i − 1

}
.

For this reason we will freely identify these objects, and use expressions such as “the shifted
partition (5,2,1).” We also identify each shifted partition with its diagram, which we draw
rotated counterclockwise by 3

4π radians with respect to the usual (Anglophone) convention.
So, for example, the diagram of the shifted partition (5,2,1) is shown in Fig. 1. We let

δn
def= (n,n − 1, . . . ,2,1).
We follow [11] for general Coxeter groups notation and terminology. In particular, given a

Coxeter system (W,S) and u ∈ W we denote by l(u) the length of u in W , with respect to S, and

we let D(u)
def= {s ∈ S: l(us) < l(u)}. For u,v ∈ W we let l(u, v)

def= l(v) − l(u). We denote by e

the identity of W , and we let T
def= {usu−1: u ∈ W, s ∈ S} be the set of reflections of W . Given

J ⊆ S we let WJ be the parabolic subgroup generated by J and

WJ def= {
u ∈ W : l(su) > l(u) for all s ∈ J

}
. (1)

Note that W∅ = W . If WJ is finite then we denote by w0(J ) its longest element. We will al-
ways assume that WJ is partially ordered by Bruhat order. Recall (see, e.g., [11, §5.9]) that this
means that x � y if and only if there exist r ∈ N and t1, . . . , tr ∈ T such that tr · · · t1 x = y and
l(ti · · · t1 x) > l(ti−1 · · · t1x) for i = 1, . . . , r . Given u,v ∈ WJ , u � v, we let

[u,v]J def= {
z ∈ WJ : u � z � v

}
,

and [u,v] def= [u,v]∅.
The following result is due to Deodhar, and we refer the reader to [7, §§2–3] for its proof.

Theorem 2.1. Let (W,S) be a Coxeter system, and J ⊆ S. Then, for each x ∈ {−1, q}, there is a
unique family of polynomials {RJ,x

u,v (q)}u,v∈WJ ⊆ Z[q] such that, for all u,v ∈ WJ :

(i) R
J,x
u,v (q) = 0 if u � v;

(ii) R
J,x
u,u (q) = 1;
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(iii) if u < v and s ∈ D(v) then

RJ,x
u,v (q) =

⎧⎪⎨
⎪⎩

R
J,x
us,vs(q), if us < u,

(q − 1)R
J,x
u,vs(q) + qR

J,x
us,vs(q), if u < us ∈ WJ ,

(q − 1 − x)R
J,x
u,vs(q), if u < us /∈ WJ .

The polynomials R
J,x
u,v (q), whose existence is guaranteed by the previous theorem, are called

the parabolic R-polynomials of WJ of type x. It follows immediately from Theorem 2.1 and
from well-known facts (see, e.g., [11, §7.5]) that R

∅,−1
u,v (q) (= R

∅,q
u,v (q)) are the (ordinary)

R-polynomials of W which we will denote simply by Ru,v(q), as customary. The parabolic
R-polynomials can then be used to define and compute the parabolic Kazhdan–Lusztig polyno-
mials of WJ of type x (see [7, Proposition 3.1]).

The parabolic R-polynomials are related to their ordinary counterparts also in the following
way.

Proposition 2.2. Let (W,S) be a Coxeter system, J ⊆ S, and u,v ∈ WJ . Then we have that

RJ,x
u,v (q) =

∑
w∈WJ

(−x)l(w)Rwu,v(q),

for all x ∈ {−1, q}.

A proof of this result can be found in [7, Proposition 2.12].
There is one more property of the parabolic R-polynomials that we will use and that we recall

for the reader’s convenience. A proof of it can be found in [8, Corollary 2.2].

Proposition 2.3. Let (W,S) be a Coxeter system, and J ⊆ S. Then

ql(u,v)RJ,x
u,v

(
1

q

)
= (−1)l(u,v)R

J,q−1−x
u,v (q)

for all u,v ∈ WJ , and x ∈ {−1, q}.

The purpose of this work is to study the parabolic R-polynomials for quotients WJ such that
(W,WJ ) is a Hermitian symmetric pair. These quotients have been classified (see, e.g., [3]) and
there are five infinite families and two exceptional ones. Using (and abusing slightly) the stan-
dard notation for the classification of the finite Coxeter systems, the Hermitian symmetric pairs
are: (An,Ai−1 × An−i ), (Bn,An−1), (Bn,Bn−1), (Dn,An−1), (Dn,Dn−1), (E6,D5), (E7,E6)

(n � 3, 1 � i � n). The parabolic R-polynomials for the pairs (An,Ai−1 × An−i ) (1 � i � n)
have been computed in [4]. In this work we deal with the other ones.

We follow [2, Chapter 8] for combinatorial descriptions of the Coxeter systems of type Bn

and Dn as permutation groups. In particular, we let SB
n be the group of all bijections w

of {−n, . . . ,−1,1, . . . , n} in itself such that w(−i) = −w(i) for all i ∈ [n], sj
def= (j, j +

1)(−j,−j − 1) for j = 1, . . . , n − 1, s0
def= (1,−1), and Bn

def= {s0, . . . , sn−1}. If v ∈ SB
n then
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we write v = [a1, . . . , an] to mean that v(i) = ai , for i = 1, . . . , n. It is well known that (SB
n ,Bn)

is a Coxeter system of type Bn and that the following holds. Given v ∈ SB
n we let

inv(v)
def= ∣∣{(i, j) ∈ [n]2: i < j, v(i) > v(j)

}∣∣,
N1(v)

def= |{i ∈ [n]: v(i) < 0}| and

N2(v)
def= ∣∣{(i, j) ∈ [n]2: i < j, v(i) + v(j) < 0

}∣∣.
Proposition 2.4. Let v ∈ SB

n . Then l(v) = inv(v)+N1(v)+N2(v), and D(v) = {si ∈ Bn: v(i) >

v(i + 1)}, where v(0)
def= 0.

Let An−1
def= {s1, . . . , sn−1}. Then (SB

n )An−1
∼= Sn and it is clear from Proposition 2.4 that

v ∈ (SB
n )An−1 if and only if v−1(1) < v−1(2) < · · · < v−1(n). In this case

v−1(1) < · · · < v−1(k) < 0 < v−1(k + 1) < · · · < v−1(n)

where k = N1(v), and we associate to v ∈ (SB
n )An−1 the shifted partition

ΛB(v)
def= (

v−1(−1), v−1(−2), . . . , v−1(−k)
)
. (2)

The next result is known, and not hard to prove.

Proposition 2.5. The map ΛB defined by (2) is a bijection between (SB
n )An−1 and {λ ∈ S:

λ ⊆ δn}. Furthermore u � v in (SB
n )An−1 if and only if ΛB(u) ⊆ ΛB(v), and l(v) = |ΛB(v)|,

for all u,v ∈ (SB
n )An−1 .

We find it sometimes convenient to identify a shifted partition in {λ ∈ S: λ ⊆ δn} with a
lattice path with (1,1) (up) and (1,−1) (down) steps starting at (0,0) and having n steps. So, for
example, the shifted partition (5,2,1) ⊆ δ7 corresponds to the lattice path illustrated in Fig. 2.

Proposition 2.6. Let v ∈ (SB
n )An−1 and i ∈ [n]. Then the ith step ( from the left) of ΛB(v) (seen

as a lattice path) is an up-step if and only if v(n + 1 − i) < 0.

Proof. From the definition of ΛB(v) we have that the ith step of ΛB(v) is an up step if and only
if n + 1 − i ∈ {v−1(−1), . . . , v−1(−k)}. But this, by the definition of k, happens if and only if
v(n + 1 − i) < 0 , as desired. �
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We let SD
n be the subgroup of SB

n defined by

SD
n

def= {
w ∈ SB

n : N1(w) ≡ 0 (mod 2)
}
,

s̃0
def= (1,−2)(2,−1), and Dn

def= {s̃0, s1, . . . , sn−1}. It is then well known that (SD
n ,Dn) is a Cox-

eter system of type Dn, and that the following holds (see, e.g., [2, §8.2]).

Proposition 2.7. Let v ∈ SD
n . Then l(v) = inv(v) + N2(v), and D(v) = {si ∈ Dn: v(i) >

v(i + 1)}, where v(0)
def= −v(2).

Let v ∈ SD
n . It is then clear from Proposition 2.7 that v ∈ (SD

n )An−1 if and only if v−1(1) <

· · · < v−1(n). In this case

v−1(1) < · · · < v−1(k) < 0 < v−1(k + 1) < · · · < v−1(n) (3)

where k = N1(v), and we associate to v ∈ (SD
n )An−1 the shifted partition

ΛD(v)
def= (

v−1(−1) − 1, v−1(−2) − 1, . . . , v−1(−k) − 1
)
. (4)

The next result is almost certainly known. However, for lack of an adequate reference, and for
completeness, we include its proof here.

Proposition 2.8. The map ΛD defined by (4) is a bijection between (SD
n )An−1 and {λ ∈ S: λ ⊆

δn−1}. Furthermore u � v in (SD
n )An−1 if and only if ΛD(u) ⊆ ΛD(v), and l(v) = |ΛD(v)|, for

all u,v ∈ (SD
n )An−1 .

Proof. Since l(ΛB(v)) = N1(v) for all v ∈ (SB
n )An−1 and (SD

n )An−1 = {v ∈ (SB
n )An−1 : N1(v) ≡

0 (mod 2)} it follows immediately from Proposition 2.5 that ΛB is a bijection between (SD
n )An−1

and {λ ∈ S: λ ⊆ δn, l(λ) ≡ 0 (mod 2)}. But the map (λ1, . . . , λk) �→ (λ1 − 1, . . . , λk − 1) is
clearly a bijection between {λ ∈ S: λ ⊆ δn, l(λ) ≡ 0 (mod 2)} and {λ ∈ S: λ ⊆ δn−1} so the first
statement follows. To prove the second statement note that, by Proposition 2.5 and the definition
of ΛB , it is equivalent to the statement that, for all u,v ∈ (SD

n )An−1 , u � v in SD
n if and only if

u � v in SB
n . It is well known that if u � v in SD

n then u � v in SB
n (see, e.g., [2, Theorems 8.1.8

and 8.2.8]). So assume that u � v in SB
n . By [2, Theorems 8.1.8 and 8.2.8] it is enough to show

that if a, b ∈ [n] are such that [−a, a] × [−b, b] is an empty rectangle for both u and v, and
u[−a − 1, b + 1] = v[−a − 1, b + 1] (we refer the reader to [2, §8.2, p. 257] for the definition
of this notation and terminology), then u[−1, b + 1] ≡ v[−1, b + 1] (mod 2). Note that, for any
w ∈ (SD

n )An−1 and any a, b ∈ [n], w[−1, b + 1] = max{0,N1(w) − b}, and if [−a, a] × [−b, b]
is empty for w then N1(w) � b (for if N1(w) < b then w−1(b) > 0 and hence, since [−a, a] ×
[−b, b] is empty for w, w−1(b) > a and |w(1)| > b, hence a < w−1(b) < w−1(|w(1)|) � 1,
which is a contradiction). Hence, under our hypotheses, u[−1, b + 1] = N1(u) − b ≡ N1(v) −
b = v[−1, b + 1] (mod 2), as desired. Finally, lD(v) = lB(v) − N1(v) = |ΛB(v)| − l(ΛB(v)) =
|ΛD(v)| for any v ∈ (SD

n )An−1 by (4) and Propositions 2.4, 2.7, and 2.5. �
Proposition 2.9. Let v ∈ (SD

n )An−1 and i ∈ [n − 1]. Then the ith step ( from the left) of ΛD(v)

(seen as a lattice path) is an up-step if and only if v(n+ 1 − i) < 0. In particular, v(1) < 0 if and
only if ΛD(v) has an odd number of up-steps.
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Proof. This follows immediately from Proposition 2.6 and the fact that the ith step (1 � i �
n − 1) of (λ1, . . . , λk) ⊆ δn is up if and only if the ith step of (λ1 − 1, . . . , λk − 1) ⊆ δn−1 is, for
all (λ1, . . . , λk) ∈ S . �

Let u ∈ SB
n , and Bn−1

def= {s0, . . . , sn−2} ⊆ Bn. Then (SB
n )Bn−1

∼= SB
n−1 and by Proposition 2.4

we have that

(
SB

n

)Bn−1 = {
w ∈ SB

n : 0 < w−1(1) < · · · < w−1(n − 1)
}
.

Therefore u ∈ (SB
n )Bn−1 if and only if there exist i ∈ [n] and ε ∈ {1,−1} such that

u = [1,2, . . . , i − 1, εn, i, . . . , n − 1].

Let, for brevity, uεi
def= [1,2, . . . , i − 1, εn, i, . . . , n− 1]. It then follows easily from the definition

of Bruhat order that

un < un−1 < · · · < u1 < u−1 < · · · < u−n.

So (SB
n )Bn−1 , partially ordered by Bruhat order, is a chain with 2n elements.

Let v ∈ SD
n , and Dn−1

def= {s̃0, s1, . . . , sn−2} ⊆ Dn. Then (SD
n )Dn−1

∼= SD
n−1 and by Proposi-

tion 2.7 we have that

(
SD

n

)Dn−1 = {
w ∈ SD

n : w−1(−2) < w−1(1) < w−1(2) < · · · < w−1(n − 1)
}
.

Hence, if w ∈ (SD
n )Dn−1 , then 0 < w−1(2) so

(
SD

n

)Dn−1 = {
vεi : i ∈ [n], ε ∈ {−1,1}},

where

vεi
def=

{ [ε1,2, . . . , i − 1, εn, i, . . . , n − 1], if i � 2,

[εn, ε1,2, . . . , n − 1], if i = 1,

for i ∈ [n], ε ∈ {−1,1}. Furthermore, it follows easily from the definition of Bruhat order (and
from Proposition 2.7) that

vn < vn−1 < · · · < v2 < v1 < v−2 < · · · < v−n,

v2 < v−1 < v−2, and v−1 and v1 are incomparable.

3. Parabolic R-polynomials

In this section we obtain explicit combinatorial product formulas for the parabolic R-
polynomials of Hermitian symmetric pairs. These show, in particular, that all the roots of these
polynomials are (either zero or) roots of unity. As an application of our results, we derive explicit
combinatorial product formulas for certain sums and alternating sums of ordinary Kazhdan–
Lusztig R-polynomials.
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Let u,v ∈ SB
n . For j ∈ [n] let

bj (u, v)
def= ∣∣{r � j : v(r) < 0

}∣∣ − ∣∣{r � j : u(r) < 0
}∣∣.

For example, if u = [3,4,5,6,−2,7,−1] and v = [−4,5,−3,6,7,−2,−1] then (b1(u, v),

. . . , b7(u, v)) = (2,1,1,0,0,1,0). Note that it follows easily from Propositions 2.5 and 2.8 that
if u,v ∈ (SB

n )An−1 (respectively, (SD
n )An−1 ) then bj (u, v) � 0 for j = 1, . . . , n if and only if

u � v in (SB
n )An−1 (respectively, (SD

n )An−1 ). We let

N(u,v)
def= {

r ∈ [n]: u(r) v(r) < 0
}

and

D(u,v)
def= {

r ∈ N(u,v): (−1)br (u,v) < 0
}
. (5)

Theorem 3.1. Let WJ ∈ {(SB
n )An−1 , (SD

n )An−1} and u,v ∈ WJ , u � v. Then

RJ,−1
u,v (q) = ql(u,v)

∏
j∈D(u,v)

(
1 − q−b̃j (u,v)

)
,

where

b̃j (u, v)
def=

{
bj (u, v), if u(j) > 0,

bj (u, v) + 1, if u(j) < 0.
(6)

Proof. Let, for brevity, Ru,v(q)
def= R

J,−1
u,v (q) for u,v ∈ WJ . We proceed by induction on l(v)

the result being trivially true if v = e. So suppose that l(v) � 1. Let s ∈ D(v).
Suppose first that s = (i, i + 1)(−i − 1,−i) for some i ∈ [n − 1]. Then, by Propositions 2.4

and 2.7, v(i) > v(i + 1). Since v ∈ WJ , this implies that v(i) > 0 > v(i + 1). We have three
cases to consider.

(a) us < u. Then, since u ∈ WJ , u(i) > 0 > u(i + 1). Therefore N(u,v) = N(us, vs) and
bj (u, v) = bj (us, vs) for all j ∈ [n]. So D(u,v) = D(us, vs), b̃j (u, v) = b̃j (us, vs) for all j ∈
D(u,v), and by Theorem 2.1 and our induction hypothesis we have that

Ru,v(q) = Rus,vs(q)

= ql(us,vs)
∏

j∈D(us,vs)

(
1 − q−b̃j (us,vs)

)

= ql(u,v)
∏

j∈D(u,v)

(
1 − q−b̃j (u,v)

)
,

as desired.

(b) u < us /∈ WJ . Then, by Propositions 2.4 and 2.7, either u(i) < u(i + 1) < 0 or 0 < u(i) <

u(i + 1). In the first case

N(u,vs) = (
N(u,v) \ {i}) ∪ {i + 1}
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and bj (u, v) = bj (u, vs) for j ∈ [n] \ {i + 1}, bi(u, v) = bi+1(u, vs). Therefore

D(u,vs) \ {i + 1} = D(u,v) \ {i}

and i ∈ D(u,v) if and only if i + 1 ∈ D(u,vs). Hence, by Theorem 2.1 and our induction hy-
pothesis

Ru,v(q) = qRu,vs(q)

= q ql(u,vs)
∏

j∈D(u,vs)

(
1 − q−b̃j (u,vs)

)

= ql(u,v)
∏

j∈D(u,v)

(
1 − q−b̃j (u,v)

)
,

as desired.
In the second case N(u,vs) = (N(u, v) \ {i + 1}) ∪ {i}, and bj (u, vs) = bj (u, v) for j ∈

[n]\{i+1}, bi(u, vs) = bi+1(u, v). Therefore D(u,vs)\{i} = D(u,v)\{i+1}, and i ∈ D(u,vs)

if and only if i + 1 ∈ D(u,v), and the result follows as before.

(c) u < us ∈ WJ . Then, by Propositions 2.4 and 2.7, u(i) < 0 < u(i + 1). Therefore
N(u,vs) = N(u,v) \ {i, i + 1}, N(us, vs) = N(u,v), bj (us, vs) = bj (u, vs) = bj (u, v) for
j ∈ [n] \ {i + 1}, and

bi+1(us, vs) + 1 = bi(u, v) = bi+1(u, v) − 1. (7)

So

D(u,vs) = D(u,v) \ {i, i + 1} = D(us, vs) \ {i, i + 1}

and i + 1 ∈ D(u,v) if and only if i /∈ D(u,v) if and only if i /∈ D(us, vs) if and only if i + 1 ∈
D(us, vs). Hence, we have from our induction hypothesis that

Ru,vs(q) = ql(u,vs)
∏

j∈D(u,vs)

(
1 − q−b̃j (u,vs)

)

= ql(u,v)−1
∏

j∈D(u,v)\{i,i+1}

(
1 − q−b̃j (u,v)

)
, (8)

and, if us � vs,

Rus,vs(q) = ql(us,vs)
∏

j∈D(us,vs)

(
1 − q−b̃j (us,vs)

)

= ql(u,v)−2
∏

j∈D(u,v)\{i,i+1}

(
1 − q−b̃j (u,v)

)
A(u,v),

where
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A(u,v)
def=

{
(1 − q−b̃i (us,vs)), if i ∈ D(u,v),

(1 − q−b̃i+1(us,vs)), if i /∈ D(u,v).

Therefore, by Theorem 2.1,

Ru,v(q) = ql(u,v)−1
∏

j∈D(u,v)\{i,i+1}

(
1 − q−b̃j (u,v)

)(
q − 1 + A(u,v)

)

and the result follows since b̃i (u, v) − 1 = b̃i (us, vs) if i ∈ D(u,v) and b̃i+1(us, vs) =
b̃i+1(u, v) − 1 if i /∈ D(u,v).

If us � vs then from (7) and the comments at the beginning of this section we conclude that
bi(u, v) = 0, bi+1(u, v) = 1. Hence i + 1 ∈ D(u,v) and by Theorem 2.1 and (8) we have that

Ru,v(q) = (q − 1)Ru,vs(q)

= (q − 1)ql(u,v)−1
∏

j∈D(u,v)\{i,i+1}

(
1 − q−b̃j (u,v)

)

= ql(u,v)
∏

j∈D(u,v)

(
1 − q−b̃j (u,v)

)
,

since b̃i+1(u, v) = 1, and the result again follows.
Assume now that WJ = (SB

n )An−1 and that s = (−1,1). Then, by Proposition 2.4, v(1) < 0.
We have two cases to consider.

(a) us < u. Then u(1) < 0. Therefore N(u,v) = N(us, vs), bj (u, v) = bj (us, vs) for all j ∈
[n], and hence D(u,v) = D(us, vs), and 1 /∈ D(u,v). So, by Theorem 2.1 and our induction
hypothesis,

Ru,v(q) = Rus,vs(q)

= ql(us,vs)
∏

j∈D(us,vs)

(
1 − q−b̃j (us,vs)

)

= ql(u,v)
∏

j∈D(u,v)

(
1 − q−b̃j (u,v)

)
,

as desired.

(b) u < us. Then u(1) > 0 and necessarily us ∈ (SB
n )An−1 . Hence N(u,v) = N(us, vs),

N(u,vs) = N(u,v) \ {1}, and bj (u, v) = bj (us, vs) = bj (u, vs) for all j ∈ [n] \ {1},

b1(u, vs) = b1(u, v) − 1 = b1(us, vs) + 1. (9)

So

D(u,vs) = D(u,v) \ {1} = D(us, vs) \ {1}

and 1 ∈ D(u,v) if and only if 1 ∈ D(us, vs). Hence we have from our induction hypothesis that



422 F. Brenti / Journal of Algebra 318 (2007) 412–429
Ru,vs(q) = ql(u,vs)
∏

j∈D(u,vs)

(
1 − q−b̃j (u,vs)

)

= ql(u,v)−1
∏

j∈D(u,v)\{1}

(
1 − q−b̃j (u,v)

)
, (10)

and, if us � vs,

Rus,vs(q) = ql(us,vs)
∏

j∈D(us,vs)

(
1 − q−b̃j (us,vs)

)

= ql(u,v)−2
∏

j∈D(u,v)\{1}

(
1 − q−b̃j (u,v)

)
A(u,v),

where

A(u,v)
def=

{
1 − q−b̃1(u,v)+1, if 1 ∈ D(u,v),

1, if 1 /∈ D(u,v).
(11)

Therefore, by Theorem 2.1,

Ru,v(q) = ql(u,v)−1
∏

j∈D(u,v)\{1}

(
1 − q−b̃j (u,v)

)(
q − 1 + A(u,v)

)

and the result follows from (11).
If us � vs then from (9), and the comments at the beginning of this section, we conclude that

b1(u, v) = 1. Hence 1 ∈ D(u,v) and by Theorem 2.1 and (10) we have that

Ru,v(q) = (q − 1)Ru,vs(q)

= (q − 1)ql(u,v)−1
∏

j∈D(u,v)\{1}

(
1 − q−b̃j (u,v)

)

= ql(u,v)
∏

j∈D(u,v)

(
1 − q−b̃j (u,v)

)
,

since b̃1(u, v) = 1, and the result again follows.
Assume now that WJ = (SD

n )An−1 , and that s = (−1,2)(−2,1). Then, by Proposition 2.7,
v(1) + v(2) < 0. This, since v ∈ (SD

n )An−1 , implies that v(1), v(2) < 0 (for if v(1) < 0 < v(2)

then v(−1) > 0 so, by (3), v(2) = v(−1) + 1 and hence v(1) + v(2) = 1 > 0, and similarly if
v(1) > 0 > v(2)). We have two cases to consider.

(a) us < u. Then u(1), u(2) < 0. Therefore N(u,v) = N(us, vs), bj (u, v) = bj (us, vs) for
all j ∈ [n], and hence D(u,v) = D(us, vs), and 1,2 /∈ D(u,v), and we conclude as in the corre-
sponding case for (SB

n )An−1 .

(b) u < us. Then, by Proposition 2.7, u(1) + u(2) > 0. There are then three subcases to con-
sider.

(i) u(1) < 0 < u(2). Then, since u ∈ (SD
n )An−1 , u(2) = 1 + u(−1) and hence us /∈ (SD

n )An−1 .
Therefore N(u,vs) = (N(u, v) \ {2}) ∪ {1}, bj (u, v) = bj (u, vs) for all j ∈ [n] \ {1,2}, and
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b2(u, v) = b1(u, v) ≡ 0 (mod 2). So 1,2 /∈ D(u,v) and hence D(u,vs) = D(u,v). Therefore
we have from our induction hypothesis and Theorem 2.1 that

Ru,v(q) = qRu,vs(q)

= qql(u,vs)
∏

j∈D(u,vs)

(
1 − q−b̃j (u,vs)

)

= ql(u,v)
∏

j∈D(u,v)

(
1 − q−b̃j (u,v)

)
,

as desired.

(ii) u(1) > 0 > u(2). Then u(2) = u(−1)+1 and hence us /∈ (SD
n )An−1 . Therefore N(u,vs) =

(N(u, v) \ {1})∪ {2}, bj (u, v) = bj (u, vs) for all j ∈ [n] \ {1,2}, and b2(u, vs)+ 1 = b1(u, v)−
1 ≡ 1 (mod 2). So 1,2 /∈ D(u,v) and hence D(u,vs) = D(u,v), and we conclude as above.

(iii) 0 < u(1), u(2). Then u(2) = u(1) + 1 and hence us ∈ (SD
n )An−1 . Therefore N(us, vs) =

N(u,v), N(u,vs) = N(u,v) \ {1,2}, bj (u, v) = bj (u, vs) = bj (us, vs) for all j ∈ [n] \ {1,2},
and

b2(u, vs) = b2(u, v) − 1 = b2(us, vs) + 1 = b1(u, vs) ≡ 0 (mod 2), (12)

b2(u, v) − 1 = b1(u, v) − 2 = b1(us, vs) + 2 ≡ 0 (mod 2). (13)

So 2 ∈ D(u,v), D(us, vs) = D(u,v) and D(u,vs) = D(u,v) \ {1,2}. Hence, by induction

Ru,vs(q) = ql(u,vs)
∏

j∈D(u,vs)

(
1 − q−b̃j (u,vs)

)

= ql(u,v)−1
∏

j∈D(u,v)\{2}

(
1 − q−b̃j (u,v)

)
,

and, if us � vs,

Rus,vs(q) = ql(us,vs)
∏

j∈D(us,vs)

(
1 − q−b̃j (us,vs)

)

= ql(u,v)−2(1 − q−b̃2(u,v)+1) ∏
j∈D(u,v)\{2}

(
1 − q−b̃j (u,v)

)

so

Ru,v(q) = (q − 1)Ru,vs(q) + qRus,vs(q)

= ql(u,v)−1(q − q−b̃2(u,v)+1) ∏
j∈D(u,v)\{2}

(
1 − q−b̃j (u,v)

)

= ql(u,v)
∏ (

1 − q−b̃j (u,v)
)

j∈D(u,v)
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as desired. If us � vs then, by (12), (13) and the comments at the beginning of this section,
b2(u, v) = 1, hence

Ru,v(q) = (q − 1)Ru,vs(q)

= ql(u,v)−1(q − 1)
∏

j∈D(u,v)\{2}

(
1 − q−b̃j (u,v)

)

= ql(u,v)
∏

j∈D(u,v)

(
1 − q−b̃j (u,v)

)
,

and the result again follows.
This concludes the induction step and hence the proof. �
We illustrate the preceding theorem with an example. Suppose WJ = (SB

7 )A6 , u = [3,4,5,6,

−2,7,−1] and v = [−4,5,−3,6,7,−2,−1]. Then (b̃1(u, v), . . . , b̃7(u, v)) = (2,1,1,0,1,1,1)

so by Proposition 2.4 and Theorem 3.1 we have that R
J,−1
u,v (q) = q17−12(1 − q−1)2. On the other

hand, if WJ = (SD
7 )A6 then R

J,−1
u,v (q) = q13−10(1 − q−1)2.

We now consider the Hermitian symmetric pairs (SB
n ,Bn−1) and (SD

n ,Dn−1).

Theorem 3.2. Let u,v ∈ (SB
n )Bn−1 , u < v. Then

RJ,−1
u,v (q) = ql(u,v)

(
1 − q−1). (14)

Proof. We proceed by induction on l(v), the result being clear if l(v) = 1. So assume that
l(v) � 2 and let u < v. If l(u, v) = 1 then the result is easy to check, so assume l(u, v) � 2.
Let s ∈ D(v). Then from Theorem 2.1 and our induction hypothesis we conclude that

RJ,−1
u,v (q) =

⎧⎨
⎩

ql(us,vs)(1 − q−1), if us < u,

(q − 1)ql(u,vs)(1 − q−1) + qql(us,vs)(1 − q−1), if u < us ∈ (SB
n )Bn−1 ,

qql(u,vs)(1 − q−1), if u < us /∈ (SB
n )Bn−1

(note that, if us ∈ (SB
n )Bn−1 , then us < vs since (SB

n )Bn−1 is a chain), and (14) follows. �
Recall the notation vεi (ε ∈ {−1,1}, i ∈ [n]) introduced in Section 2 for the elements

of (SD
n )Dn−1 .

Theorem 3.3. Let u,v ∈ (SD
n )Dn−1 , u < v. Then

RJ,−1
u,v (q) =

{
ql(u,v)(1 − q−1)(1 − q− l(u,v)

2 ), if l(u) + l(v) = 2n − 2,

ql(u,v)(1 − q−1), otherwise.

Proof. We proceed by induction on l(v), the result being clear if l(v) = 1. So assume that
l(v) � 2. If [u,v]Dn−1 is a chain then the result follows similarly as in the proof of Theorem 3.2.
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If [u,v]Dn−1 is not a chain then u = vi and v = v−j for some i, j ∈ [2, n]. Since sj−1 ∈ D(v−j )

and D(vi) = {si} we conclude from Theorem 2.1 that

Rvi,v−j
(q) =

⎧⎨
⎩

Rvi+1,v−j+1(q), if j = i + 1,

(q − 1)Rvi ,v−j+1(q) + qRvi−1,v−j+1(q), if j = i,

qRvi,v−j+1(q), otherwise,

and the result follows from our induction hypothesis (note that vi−1 � v−i+1 if and only if
i �= 2). �

The results in this section, together with those in [4, §3] and Proposition 2.3, complete the
computation of the parabolic R-polynomials of Hermitian symmetric pairs.

A consequence of these results is the following one, which implies that all the roots of these
polynomials are (either zero or) roots of unity.

Corollary 3.4. Let (W,WJ ) be a Hermitian symmetric pair, and u,v ∈ WJ , u < v. Then there
exist b̃1(u, v), . . . , b̃r (u, v) ∈ P (r = r(u, v) ∈ P) such that

R
J,q
u,v (q) = (−1)l(u,v)

r∏
i=1

(
1 − qb̃i (u,v)

)
(15)

and

RJ,−1
u,v (q) = ql(u,v)

r∏
i=1

(
1 − q−b̃i (u,v)

)
. (16)

Proof. This follows immediately from Theorems 3.1–3.3, Proposition 2.3, the main result of [4,
§3], and computer calculations. �

The parabolic Kazhdan–Lusztig R-polynomials for the exceptional Hermitian symmetric
pairs have been computed by implementing in Maple 6 the recursion given by Theorem 2.1.
These implementations used two Maple packages for handling finite Coxeter groups (Ver-
sion 2.3) and posets (Version 2.2) developed by John Stembridge.

It would be interesting to have a unified proof of this result, and a unified interpretation of the
integers b̃1(u, v), . . . , b̃r (u, v) appearing in (15) and (16).

In the case of a lower interval, more can be said. For a finite Coxeter group W let E(W) ⊂ P
be its set of exponents.

Corollary 3.5. Let (W,WJ ) be a Hermitian symmetric pair and v ∈ WJ . Then there exists
T (v) ⊆ E(W) such that

R
J,q
e,v (q) = (−1)l(v)

∏
j∈T (v)

(
1 − qj

)

and

RJ,−1
e,v (q) = ql(v)

∏ (
1 − q−j

)
.

j∈T (v)
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Proof. The result follows immediately from Corollary 3.5 of [4] for the Hermitian symmetric
pairs of type A, from Theorems 3.2 and 3.3 if WJ ∈ {(SB

n )Bn−1 , (SD
n )Dn−1}, from Theorem 3.1

if WJ ∈ {(SB
n )An−1 , (SD

n )An−1}, and from computer calculations for the exceptional Hermitian
symmetric pairs. �

It is an open problem, in the theory of the (ordinary) R-polynomials, to know if given u,v ∈ W

there exists w ∈ W such that Ru,v(q) = Re,w(q) [1]. The last two results (and simple examples)
show that, in general, this is false for the parabolic R-polynomials of Hermitian symmetric pairs.

As a further consequence of our main results we obtain combinatorial closed product formulas
for certain sums and alternating sums of ordinary R-polynomials.

Corollary 3.6. Let (W,WJ ) be a Hermitian symmetric pair, and u,v ∈ WJ , u < v. Then there
exist b̃1(u, v), . . . , b̃r (u, v) ∈ P (r = r(u, v) ∈ P) such that

∑
w∈WJ

(−x)l(w)Rwu,v(q) = (q − x − 1)l(u,v)
r∏

i=1

(
1 −

(
x2

q

)b̃i (u,v))
,

for all x ∈ {−1, q}.

Proof. This follows immediately from Corollary 3.4 and Proposition 2.2. �
Note that the integers b̃1(u, v), . . . , b̃r (u, v) in Corollary 3.6 are explicitly determined in The-

orems 3.1–3.3, and Theorem 3.1 of [4] (see also Corollary 3.8 below).
We conclude by showing that, for the Hermitian symmetric pairs (SB

n ,An−1), (SD
n ,An−1) and

(Sn,An−1 \ {si}) (n � 3, 1 � i � n − 1) (the “interesting” Hermitian symmetric pairs, according
also to [3, §1, p. 279]) there is a unified interpretation of the exponents appearing in Corollary 3.4.

Let WJ ∈ {(SB
n )An−1 , (SD

n+1)
An , (Sn)

An−1\{si }} (1 � i � n − 1) and u ∈ WJ . By (2), (4), and
(2) of [4], and the comments following Propositions 2.5 and 2.8 of [4] we may associate to u a
lattice path, which we will denote, for simplicity, by Λ(u), with (1,1) and (1,−1) steps, starting
at (0,0) and having n steps. Furthermore, by Propositions 2.5, 2.8 and 2.8 of [4], we have that,
for all u,v ∈ WJ , u � v if and only if Λ(u) lies (weakly) below Λ(v) (write Λ(u) � Λ(v), if
this is the case).

Let λ, μ be two such lattice paths, with μ � λ. Let j ∈ [n] and consider the j th step of λ (from
the left). We say that such a step is shifted-allowable (or, s-allowable, for short) with respect to
μ if the j th step of μ is not parallel to it, and ãj (μ,λ) is odd, where ãj (μ,λ) is the vertical
distance (divided by two, since it is always even) between the (right end of the) j th step of λ and

the (right end of the) j th step of μ. Let |λ \ μ| def= ∑n
j=1 ãj (μ,λ).

Proposition 3.7. Let u,v ∈ (SB
n )An−1 , u � v. Then

bi(u, v) = ãn+1−i

(
ΛB(u),ΛB(v)

)
, (17)

for i = 1, . . . , n. Furthermore n + 1 − i ∈ D(u,v) if and only if the ith step of ΛB(v) is
s-allowable with respect to ΛB(u).
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Proof. Let i ∈ [n]. Clearly, the vertical height of the path ΛB(v) after i steps, hi(ΛB(v)), equals
the difference between the number of up-steps and that of down-steps among the first i steps of
ΛB(v). But, by Proposition 2.6, the j th step of ΛB(v) is an up-step if and only if v(n + 1 −
j) < 0. Therefore

hi

(
ΛB(v)

) = ∣∣{j ∈ [i]: v(n + 1 − j) < 0
}∣∣ − ∣∣{j ∈ [i]: v(n + 1 − j) > 0

}∣∣
= 2

∣∣{j ∈ [i]: v(n + 1 − j) < 0
}∣∣ − i.

Hence

ãi

(
ΛB(u),ΛB(v)

) = 1

2

(
hi

(
ΛB(v)

) − hi

(
ΛB(u)

))
= ∣∣{j ∈ [i]: v(n + 1 − j) < 0

}∣∣ − ∣∣{j ∈ [i]: u(n + 1 − j) < 0
}∣∣

= bn+1−i (u, v).

Furthermore, again by Proposition 2.6, n + 1 − i ∈ N(u,v) if and only if the ith steps of ΛB(v)

and ΛB(u) are not parallel, and the result follows from the definition of D(u,v) and (17). �
We can now give the following unified interpretation of the exponents appearing in Corol-

lary 3.4.

Corollary 3.8. Let WJ ∈ {(SB
n )An−1 , (SD

n+1)
An , (Sn)

An−1\{si }} for some 1 � i � n− 1 and u,v ∈
WJ , u � v. Then

R
J,q
u,v (q) = (−1)|λ\μ| ∏

j

(
1 − qaj (μ,λ)

)

where μ
def= Λ(u), λ

def= Λ(v), j runs over all the s-allowable steps of λ with respect to μ, and

aj (μ,λ)
def=

{
ãj (μ,λ), if the j th step of μ is down,

ãj (μ,λ) + 1, if the j th step of μ is up.
(18)

Proof. The result follows immediately from Theorem 3.1, and Propositions 2.3 and 3.7 if WJ =
(SB

n )An−1 . If WJ = (SD
n+1)

An then it follows similarly using the facts that if v ∈ (SD
n+1)

An then
ΛD(v) (seen as a lattice path) consists of the first n steps of ΛB(v), and 1 /∈ D(u,v) if u,v ∈
(SD

n+1)
An .

Finally, suppose WJ = (Sn)
An−1\{si } for some i ∈ [n − 1]. Let [n]+−(μ,λ) be the set of all

j ∈ [n] such that the j th step of λ is up and the j th step of μ is down, and define [n]−+(μ,λ)

similarly. Then, by Corollary 3.4 of [4],

R
J,q
u,v (q) = (−1)|λ\μ| ∏

j∈[n]+(μ,λ)

(
1 − qãj (μ,λ)

)
. (19)
−
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On the other hand, by (18)∏
j

(
1 − qaj (μ,λ)

) =
∏
j

(
1 − qãj (μ,λ)

)∏
j

(
1 − qãj (μ,λ)+1) (20)

where the first (respectively, second, third) product is over all j ∈ [n]+−(μ,λ) ∪ [n]−+(μ,λ)

(respectively, [n]+−(μ,λ), [n]−+(μ,λ)) such that ãj (μ,λ) ≡ 1 (mod 2). Because μ and λ end
at the same point (see the comments following Proposition 2.8 in [4]) ãn(μ,λ) = 0 so there
is a bijection j �→ j ′ from [n]+−(μ,λ) to [n]−+(μ,λ) such that ãj (μ,λ) = ãj ′−1(μ,λ) for all
j ∈ [n]+−(μ,λ) (note that 1 /∈ [n]−+(μ,λ) since μ � λ). Hence

∏
j

(
1 − qãj (μ,λ)+1) =

∏
j

(
1 − qãj−1(μ,λ)

) =
∏
j

(
1 − qãj (μ,λ)

)
(21)

where the first two products are over all j ∈ [n]−+(μ,λ) such that ãj (μ,λ) ≡ 1 (mod 2) while
the third product is over all j ∈ [n]+−(μ,λ) such that ãj (μ,λ) ≡ 0 (mod 2). Therefore, by (20)
and (21) ∏

j

(
1 − qaj (μ,λ)

) =
∏

j∈[n]+−(μ,λ)

(
1 − qãj (μ,λ)

)

where the first product is over all j ∈ [n]+−(μ,λ) ∪ [n]−+(μ,λ) such that ãj (μ,λ) ≡ 1 (mod 2),
and the result follows from (19). �
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