期刊论文详细信息
JOURNAL OF ALGEBRA 卷:484
Twisted filtrations of Soergel bimodules and linear Rouquier complexes
Article
Gobet, Thomas1 
[1] Univ Lorraine, Inst Elie Cartan Lorraine, Site Nancy,BP 70239, F-54506 Vandoeuvre Les Nancy, France
关键词: Coxeter groups;    Artin-Tits groups;    Iwahori-Hecke algebras;    Kazhdan-Lusztig theory;    Root systems;    Soergel bimodules;   
DOI  :  10.1016/j.jalgebra.2017.04.016
来源: Elsevier
PDF
【 摘 要 】

We consider twisted standard filtrations of Soergel bimodules associated to arbitrary Coxeter groups and show that the graded multiplicities in these filtrations can be interpreted as structure constants in the Hecke algebra. This corresponds to the positivity of the polynomials occurring when expressing an element of the canonical basis in a generalized standard basis twisted by a biclosed set of roots in the sense of Dyer, and comes as a corollary of Soergel's conjecture. We then show the positivity of the corresponding inverse polynomials in the case where the biclosed set is an inversion set of an element or its complement by generalizing a result of Elias and Williamson on the linearity of the Rouquier complexes associated to lifts of these basis elements in the Artin Tits group. These lifts turn out to be generalizations of Mikado braids as introduced in a joint work with Digne. This second positivity property generalizes a result of Dyer and Lehrer from finite to arbitrary Coxeter groups. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2017_04_016.pdf 616KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次