期刊论文详细信息
JOURNAL OF ALGEBRA 卷:251
Unique tensor factorization of loop-resistant algebras over a field of finite characteristic
Article
Nüsken, M
关键词: tensor product of algebras;    unique factorization;   
DOI  :  10.1006/jabr.2001.9126
来源: Elsevier
PDF
【 摘 要 】

Tensor product decomposition of algebras is known to be non-unique in many cases. But we know that a circle plus-indecomposable, finite-dimensional C-algebra A has an essentially unique tensor factorization A = At circle times (...) circle times A(r) into non-trivial, circle times-indecomposable factors A(i). Thus the semiring of isomorphism classes of finite-dimensional C-algebras is a polynomial semiring N[H]. Moreover, the field C of complex numbers can be replaced by an arbitrary (not necessarily algebraically closed) field of characteristic zero if we restrict ourselves to split algebras. Here, we show that the above result still holds in finite characteristics if we only consider loop-resistant algebras. (C) 2002 Elsevier Science (USA).

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1006_jabr_2001_9126.pdf 171KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次