期刊论文详细信息
JOURNAL OF ALGEBRA 卷:319
Unique factorization in invariant power series rings
Article
Benson, David1  Webb, Peter2 
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词: invariant theory;    symmetric powers;    unique factorization;    modular representation;   
DOI  :  10.1016/j.jalgebra.2006.01.059
来源: Elsevier
PDF
【 摘 要 】

Let G be a finite group, k a perfect field, and V a finite-dimensional kG-module. We let G act on the power series k [V] by linear substitutions and address the question of when the invariant power series k[V](G) form a unique factorization domain. We prove that for a permutation module for a p-group in characteristic p, the answer is always positive. On the other hand, if G is a cyclic group of order p, k has characteristic p, and V is an indecomposable kG-module of dimension r with 1 <= r <= p, we show that the invariant power series form a unique factorization domain if and only if r is equal to 1, 2, p - 1 or p. This contradicts a conjecture of Peskin. (C) 2006 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2006_01_059.pdf 175KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次