期刊论文详细信息
JOURNAL OF ALGEBRA | 卷:307 |
Branching rules for Specht modules | |
Article | |
Ellers, Harald ; Murray, John | |
关键词: symmetric group; Specht module; Jucys-Murphy element; | |
DOI : 10.1016/j.jalgebra.2006.07.032 | |
来源: Elsevier | |
【 摘 要 】
Let S-lambda be a Specht module for the symmetric group Sigma(n) defined over a field of characteristic different from 2, and let L-n-1 be the sum of all transpositions in Sigma(n)-1 that do not fix n - 1. It is shown that the minimal polynomial of L-n-1 acting on S lambda has maximum possible degree. As a consequence, the indecomposable components of the restriction of S-lambda to Sigma(n)-1 coincide with the block components. Analogous results are proved for L-n+1 and the Sigma(n)+1 -module that is induced from S-lambda. (C) 2006 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2006_07_032.pdf | 138KB | download |