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Abstract

Let Sλ be a Specht module for the symmetric group Σn, defined over a field of characteristic different
from 2, and let Ln−1 be the sum of all transpositions in Σn−1 that do not fix n − 1. It is shown that the
minimal polynomial of Ln−1 acting on Sλ has maximum possible degree. As a consequence, the inde-
composable components of the restriction of Sλ to Σn−1 coincide with the block components. Analogous
results are proved for Ln+1 and the Σn+1-module that is induced from Sλ.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let n be a positive integer and let Σn be the symmetric group of degree n. For any field F and
any partition λ of n, the Specht module Sλ

F is defined to be the submodule of the permutation
module (1Σλ)↑Sn spanned by all λ-polytabloids, where Σλ is the Young subgroup associated
to λ. Specht modules play a central role in the representation theory of the symmetric group.
This is because in characteristic 0, the Specht modules are the simple FΣn-modules, while in
characteristic p the heads of the Specht modules Sλ

F such that λ is p-regular are the simple FΣn-
modules. When the field F has characteristic 0, the structure of the restriction of Sλ

F to Σn−1
is given by the Classical Branching Rule, which states that Sλ

F ↓Σn−1
is a direct sum

⊕
μ S

μ
F ,

where μ runs through all partitions of n − 1 obtained from λ by removing node from its Young
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diagram. In 1971, Peel [5] gave a version of this theorem for characteristic p. He showed that
there is a series of submodules such that the successive quotients are the Specht modules S

μ
F ,

where μ runs through the same set. Nevertheless, the structure of the restriction Sλ
F ↓Σn−1

is not
well understood. For example, the problem of finding a composition series is open and very
difficult. See Kleshchev [3] for more information on the restrictions of irreducible Σn-modules
to Σn−1.

In this paper, we find the indecomposable components of Sλ
F ↓Σn−1

, when the characteristic
of F is not 2. These are given by Theorem 3.4, which states that if B is a block idempotent of
FΣn−1, then Sλ

F ↓Σn−1
B is 0 or indecomposable. We also prove the analogous theorem for the

induced module Sλ
F ↑Σn+1 . The two proofs are almost identical. In [1] we will give a complete

description of the endomorphism ring of Sλ
F ↓Σn−1

, and also that of Sλ
F ↑Σn+1 .

The assumption that char F �= 2 in Theorem 3.4 cannot be dropped—in characteristic 2 there
are decomposable Specht modules, and these can easily be used to construct examples where
block components of Sλ↓Σn−1

or Sλ↑Σn+1 are decomposable.

2. Minimal polynomial of the sum of all transpositions acting on the restriction and
induction of a Specht module

Throughout this paper n is a fixed positive integer, λ = [λ1 � λ2 � · · · � λl > 0] is a fixed
partition of n and m is the number of different nonzero parts of λ. We orient the Young diagram
[λ] left to right and top to bottom. This means that longer rows are above shorter rows, and longer
columns are to the left of shorter columns; also, the first row is the one at the top and the first
column is the one at the left. The (i, j) node is in the ith row and the j th column. We will use
n̂ to denote the set {1, . . . , n} and let Σn denote the group of permutations of n̂. Permutations
and homomorphisms will generally act on the right. The Murphy element Ln is the sum of all
transpositions in Σn that are not in Σn−1. We use En to denote the sum of all transpositions
in Σn. So En is the first elementary symmetric function in the Murphy elements.

Let F be any field and let Sλ denote the Specht module, defined over F , corresponding to λ.
We use the notation

R for the restricted module Sλ↓Σn−1
and

I for the induced module Sλ↑Σn+1 .

In this section we compute the minimal polynomial of En−1 acting on R and the minimal poly-
nomial of En+1 acting on I .

A λ-tableau is a bijective map t : [λ] → n̂. The value of t at a node (r, c) is denoted by trc.
The group Σn acts on λ-tableaux by functional composition; (tπ)rc = trcπ , for each π ∈ Σn.

We regard a λ-tabloid as an ordered partition P = (P1, . . . ,Pl ) of n̂ such that the cardinality
of Pu is λu, for u = 1, . . . , l. Each λ-tableau t determines the λ-tabloid {t} whose uth part is the
set of entries in the uth row of t . If s is a λ-tableau, then {t} = {s} if and only if s = tπ , for some
π in the row stabilizer Rt of t . We denote the column stabilizer of t by Ct . The polytabloid et is
the following element of Mλ:

et :=
∑
π∈Ct

sgnπ{tπ}.

It is shown in [2] that the polytabloids span the Specht module Sλ.
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Adapting the notation of [2], let (r1, c1), . . . , (rm, cm) be the removable nodes of [λ], ordered
so that r1 < · · · < rm and c1 > · · · > cm. Set r0 = 0 = cm+1. The addable nodes of [λ] are the
(m + 1) nodes (ru + 1, cu+1 + 1), for u = 0, . . . ,m. We use λ↓u to denote the partition of n − 1
obtained by decreasing the ruth part of λ by 1, for u ∈ m̂. In addition, we use λ↑u to denote the
partition of n + 1 obtained by increasing the (ru + 1)th part of λ by 1, for u ∈ m̂ + 1.

We need special notation for certain subsets of entries in t . For any u ∈ m̂, let Hu(t) be the
set of entries in the union of the top ru rows of t , and let Vu(t) be the set of entries in the union
of columns of t numbered from cu+1 + 1 to cu (inclusive). Clearly H1(t) ⊂ · · · ⊂ Hm(t), while
Vm(t), . . . , V1(t) form a partition of t . If u,v ∈ m̂ then Vu(t) ⊆ Hv(t) if and only if u � v. As
Hu(t) depends only on the rows of t , we may define Hu({t}) := H(t).

By Theorem 9.3 in [2], R has a Specht series

0 = R0 ⊂ R1 ⊂ R2 ⊂ · · · ⊂Rm = R,

with Ru/Ru−1 ∼= Sλ↓u , for u ∈ m̂. James’ description of R, and the Garnir relations, show that
et lies in Ru \ Ru−1 if n ∈ Vu(t) \ Hu−1(t). Also, by 17.14 in [2], the module I has a Specht
series

I = I1 ⊃ I2 ⊃ · · · ⊃ Im+1 ⊃ Im+2 = 0,

with Iu/Iu+1 ∼= Sλ↑u
, for u ∈ m̂ + 1. Moreover, James shows that each factor I/Iu+1 is isomor-

phic to a submodule of the permutation module Mλ↑u
.

Lemma 2.1. Suppose that the FΣn-module M has a Specht series

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mm = M.

Let z ∈ Z(FΣn) and let u ∈ m̂. Then the map Mu/Mu−1 → Mu/Mu−1 given by multiplication
by z, equals zu times the identity, for some zu ∈ F .

Proof. If char F = 0, then Mu/Mu−1 is an irreducible FΣn-module (a Specht module), and
the conclusion is obvious. If char F = p is positive, then Mu/Mu−1 is the p-modular reduction
of an irreducible module defined over a suitable discrete valuation ring of characteristic 0. The
conclusion follows in this case from the characteristic zero case. �

This lemma allows us to give the following upper bound on the degrees of the minimal poly-
nomials of En−1 and En+1.

Corollary 2.2. The minimal polynomial of En−1 acting on R has degree at most m, while the
minimal polynomial of En+1 acting on I has degree at most m + 1.

Proof. Let u ∈ m̂. Lemma 2.1 shows that Ru(En−1 − zu) ⊆ Mu−1, for some scalar zu. It follows
from a simple inductive argument that R

∏m
u=1(En−1 − zu) = 0. A similar argument deals with

the action of En+1 on I . �
It will turn out that the polynomials given in the proof of Corollary 2.2 are the minimal poly-

nomials we are seeking. Before we prove this, we will identify the scalars zu in terms of Young
diagrams.
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The residue of a node (r, c) is the scalar (c − r)1F . If F is a symmetric polynomial, let
F(λ) denote the evaluation of F on the multiset of residues of the nodes in [λ]. In particular, if E

denotes the first elementary polynomial in n variables, then E(λ) is the sum of the residues of the
nodes in [λ]. An easy calculation shows that E(λ) = ∑l

i=1
1
2λi(λi + 1 − 2i)1F . The next lemma

is a special case of a more general result proved by G.E. Murphy [4, (3.3)]: first elementary
symmetric function can be replaced by any symmetric function in n variables.

Lemma 2.3. En acts as the scalar E(λ) on Sλ.

Proof. Let t be a λ-tableau, let (r, c) ∈ [λ] and let i = trc. Fix 1 � c1 < c. Then by a simple
Garnir relation, et

∑
j (i, j) = et , where j runs over all entries in the c1th column of t . Also

et (i, j) = −et , for each entry j above i in column c of t . It follows that

et

∑
j

(i, j) = (c − r)et ,

where j runs over those elements of n̂ that lie strictly to the left of i, or above i in the same
column of t . If we sum over all (r, c) ∈ [λ], each transposition (i, j) occurs exactly once on the
left-hand side, while the coefficient of et on the right-hand side is E(λ). �

We next describe the induced module I . Suppose that u ∈ m̂ + 1. Let T be a λ↑u-tableau, and
let t denote the restriction of T to [λ]. Then the (λ,T )-polytabloid eλ

T is the following element
of Mλ↑u

:

eλ
T :=

∑
π∈Ct

sgnπ{T π}.

In Section 17 of [2] it is shown that when u = m+1, the corresponding (λ,T )-polytabloids span
an FΣn+1-submodule of Mλ↑m+1

that is isomorphic to the induced module I . We will always
work with this copy of I .

When we are showing that the polynomials given in the proof of 2.2 are minimal, it will be
more convenient to look at the action of the Murphy elements Ln and Ln−1 rather than En−1 and
En+1. The following lemma provides a link between these actions.

Lemma 2.4. Let t be a λ-tableau and let T be the λ↑m+1-tableau whose restriction to [λ] is t .
Suppose that f (x) ∈ F [x]. Then

etf (En−1) = etf
(
E(λ) − Ln

)
,

eλ
T f (En+1) = eλ

T f
(
E(λ) + Ln+1

)
.

Proof. Lemma 2.3 shows that En acts as the scalar E(λ) on R. The first statement then follows
from En−1 = En − Ln.

Let V be the subspace of Mλ↑m+1
that is spanned by all eλ

U such that U is a λ↑m+1-tableau
with n+1 in the unique entry of its last row. Then V is a direct summand of the restriction of I to
Σn that is isomorphic to Sλ. Since eλ

T ∈ V , Lemma 2.3 implies that eλ
T En = E(λ)eλ

T . The second
statement now follows from En+1 = En + Ln+1, and the fact that EnLn+1 = Ln+1En. �
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When we are showing that the polynomials given in the proof of 2.2 are minimal, we will
want to show that there is a λ-tableau t such that the vectors {etL

i
n | 0 � i � m − 1} are linearly

independent. This will be accomplished using the following technical lemma concerning the
action of Ln on R.

Lemma 2.5. Let t be a λ-tableau such that n ∈ Vm(t) \ Hm−1(t). For each u ∈ m̂ − 1, choose
xu ∈ Vu(t) \ Hu−1(t). Define the λ-tableau s := t (n, xm−1, xm−2, . . . , x1). Let i be a positive
integer. Then the coefficient of {s} in the expansion of etL

i
n into tabloids is

0, if 0 � i � m − 2,

1, if i = m − 1.

Proof. Clearly Li
n = ∑

(wi, n)(wi−1, n) . . . (w1, n), where (w1, . . . ,wi) ranges over all func-

tions î → n̂ − 1. Let (y1, . . . , yi) be a function î → n̂ − 1, let θ = (yi, n)(yi−1, n) . . . (y1, n), and
assume that {s} appears with nonzero coefficient in the expansion of et θ . We have two goals:

(a) to show that i = m − 1;
(b) to show that the cyclic permutations (y1, . . . , ym−1) and (x1, . . . , xm−1) are equal.

The second part of the lemma follows easily from this second goal, as we now show. In the sum∑
et (win) . . . (w1n), {s} can appear in only one term, namely et (xm−1, n) . . . (x1, n). Since this

term is equal to et (n, xm−1, xm−2, . . . , x1) = es , {s} appears with coefficient 1.
Since et θ = etθ , there exists π in the column stabilizer of tθ such that {s} = {tθπ}. Let

u ∈ m̂ − 1. Then by construction xu ∈ Vu+1(s) \ Hu(s); since {s} = {tθπ}, it follows that xu /∈
Hu(tθπ). As π−1 is a column permutation of tθ , we have xu ∈ Vu+1(tθ) ∪ · · · ∪ Vm(tθ). Thus

∀u ∈ m̂ − 1, xuθ
−1 ∈ Vu+1(t) ∪ · · · ∪ Vm(t). (1)

In particular, θ does not fix any of the m − 1 distinct symbols x1, . . . , xm−1 ∈ n̂ − 1.
In this paragraph, we will show that θ does not fix n. Assume that θ does fix n. If the symbols

in the list y1, . . . , yi were distinct, θ would be the cycle (yi, yi−1, . . . , y1, n); since θ fixes n, it
follows that there is some repetition in the list y1, . . . , yi . Since θ = (yi, n)(yi−1, n) . . . (y1, n)

and θ fixes n, the only symbols potentially moved by θ are on the list y1, . . . , yi . Since this list
contains a repeat, θ moves at most i − 1 symbols. The previous paragraph shows that θ moves at
least m − 1 symbols. Therefore m � i. But by hypothesis i � m − 1. This contradiction shows
that θ moves n.

We now know that θ moves all the m symbols in {x1, . . . , xm−1, n}. Since θ = (yi, n)(yi−1, n)

. . . (y1, n), θ can only move symbols on the list y1, y2, . . . , yi, n. By hypothesis, i � m − 1.
It follows that i = m − 1, which is goal (a). It also follows that the sets {x1, . . . , xm−1} and
{y1, . . . , ym−1} coincide and that the elements on the list y1, y2, . . . , ym−1 are distinct. Hence θ

is equal to the m-cycle (ym−1, ym−2, . . . , y1, n). In particular, ym−1θ
−1 = n. From (1) applied

with u = m − 1, xm−1θ
−1 = n. (This is because n is the only symbol moved by θ that is in

Vm(t).) Hence ym−1 = xm−1. From this fact and (1) applied with u = m − 2, it follows that
xm−2θ

−1 = xm−1. Hence ym−2 = xm−2. Continuing in this way, by reverse induction on u, it
follows that for all u ∈ m̂ − 1, yu = xu. This gives goal (b) above, and completes the proof. �
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The corresponding result for the action of Ln+1 on I is:

Lemma 2.6. Let t be a λ-tableau and let T be the λ↑m+1-tableau whose restriction to [λ]
is t . For each u ∈ m̂, choose xu ∈ Vu(t) \ Hu−1(t). Define the λ↑m+1-tableau S := T (n + 1,

xm, xm−1, . . . , x1). Let i be a positive integer. Then the multiplicity of {S} in the expansion of
eλ
T Li

n+1 into tabloids is

0, if 0 � i � m − 1,

1, if i = m.

Proof. Clearly Li
n+1 = ∑

(wi, n + 1)(wi−1, n + 1) . . . (w1, n + 1), where (w1, . . . ,wi) ranges
over all functions î → n̂. Let (y1, . . . , yi) be a function î → n̂, let θ = (yi, n + 1)(yi−1, n + 1)

. . . (y1, n + 1), and assume that {S} appears with nonzero multiplicity in the expansion of eλ
T θ

as a linear combination of tabloids. Then there exists π in the column stabilizer of tθ such that
{S} = {T θπ}.

As π fixes the single entry in the last row of T θ , and xm occupies this node in S, it follows
that (n + 1)θ = xm. Let u ∈ m̂ − 1 and let s denote the restriction of S to λ. Then xu ∈ Vu+1(s) \
Hu(s), whence xu /∈ Hu(tθπ). As π−1 is a column permutation of tθ , we have xu ∈ Vu+1(tθ) ∪
· · · ∪ Vm(tθ). Thus

xuθ
−1 ∈ Vu+1(t) ∪ · · · ∪ Vm(t). (2)

In particular, θ does not fix xu.
From its definition, θ moves at most i + 1 elements of n̂ + 1. But θ does not fix any of the

m + 1 distinct symbols n + 1, xm, . . . , x1, and i � m. So we must have i = m. This, and (2),
implies that xuθ

−1 ∈ {xu+1, . . . , xm}. Reverse induction on u shows that xuθ
−1 = xu+1. Thus

θ coincides with the (m + 1)-cycle (n + 1, xm, xm−1, . . . , x2, x1). We conclude that xu = yu,
for u ∈ m̂. This shows that θ occurs with multiplicity 1 in the expansion of Lm

n+1 as a linear
combination of group elements, whence {S} appears with multiplicity 1 in the expansion of
eλ
T Lm

n+1 as a linear combination of tabloids in Mλ↑m+1
. �

We can now prove the main result of this section.

Theorem 2.7. The minimal polynomial of En−1 acting on R is

m∏
u=1

(
x − E(λ↓u)

)
,

while the minimal polynomial of En+1 acting on I is

m+1∏
u=1

(
x − E

(
λ↑u

))
.

Proof. First, we will prove the result on R. Let t be as in Lemma 2.5. Then Lemma 2.5 implies
that the set of vectors {etL

i
n | 0 � i � m − 1} is linearly independent. It follows from Lemma 2.4
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that the set {etE
i
n−1 | 0 � i � m−1} is linearly independent. So the minimal polynomial of En−1

has degree at least m. But Lemma 2.3 and the proof of Corollary 2.2 show that R
∏m

u=1(En−1 −
E(λ↓u)) = 0.

The result on I follows from an identical argument using Lemma 2.6 in place of Lem-
ma 2.5. �
3. The indecomposable components of the restriction and induction of a Specht module

In this section we compute the indecomposable components of R and I , when the charac-
teristic of F is not 2. It is convenient to consider an FΣn-module M that shares the following
properties in common with R and I:

1. M has a Specht series

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mm = M,

such that Mu/Mu−1 ∼= Sλu , where λu is a partition of n, for each u ∈ m̂.
2. The labeling partitions satisfy λ1 � · · · � λm.
3. There exists z ∈ Z(FΣn) such that the minimal polynomial of z acting on M has degree m.

Looking at the proof of Corollary 2.2, we see that z has minimal polynomial
∏m

u=1(x − zu),
where z acts as the scalar zu on the Specht factor Mu/Mu−1.

Lemma 3.1. There exists τ ∈ M such that τ
∏m

i=u+1(z − zi) lies in Mu \ Mu−1, for each u ∈ m̂.

Proof. The hypothesis on the degree of the minimal polynomial of z implies that there exists
τ ∈ M such that τzm−1 does not lie in the span of the vectors {τ, τz, . . . , τzm−2}. Set τu =
τ

∏m
i=u+1(z − zi). Repeated application of Lemma 2.1 shows that τu ∈ Mu.

Suppose that τu ∈ Mu−1. Then Lemma 2.1 implies that τu

∏u−1
i=1 (z − zu) ⊆ Mu−1

∏u−1
i=1 (z −

zu) = 0. Thus τ
∏m

i=1,i �=u(z − zi) = 0. This contradicts our choice of τ . So τu /∈ Mu−1, which
completes the proof. �

We now consider the endomorphism ring of M .

Lemma 3.2. Suppose that char F �= 2. Then:

(i) if θ ∈ EndFΣn(M) and u ∈ m̂, then Muθ ⊆ Mu, and there is a well-defined Σn-
endomorphism θu :Mu/Mu−1 → Mu/Mu−1 given by (v + Mu−1)θu = vθ + Mu−1;

(ii) the map Φ : EndFΣn(M) → ⊕
u EndFΣn(Mu) such that (θ)Φ = (θ1, . . . , θm), for each θ ∈

EndFΣn(M), is an algebra homomorphism;
(iii) the kernel of Φ is the Jacobson radical of EndFΣn(M).

Proof. First, we prove part (i). By induction, we may assume that Mu−1θ ⊆ Mu−1. Sup-
pose that Muθ � Mu. Choose v so that m � v > u and v is maximal so that Muθ � Mv−1.
Then Muθ ⊆ Mv , and applying θ to elements of Mu induces a well-defined nonzero Σn-
homomorphism

Mu/Mu−1 → Mv/Mu−1 � Mv/Mv−1.
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But λu �λv . This, and the fact that char F �= 2, contradicts 13.17 of [2]. Thus indeed Muθ ⊆ Mu.
This shows in particular that Mu−1 is in the kernel of the map Mu → Mu/Mu−1 given by the
restriction of θ followed by projection. So θu is well-defined. This proves part (i).

It is immediate from the definition of θu that Φ is an algebra homomorphism. As char F �= 2,
the only Σn-endomorphisms of Mu/Mu−1 are scalar multiples of the identity, by 13.17 of [2]. It
follows that the codomain of Φ is commutative and semisimple. Any element of the kernel must
send Mu to Mu−1; therefore the kernel of Φ is nilpotent. This completes the proof of parts (ii)
and (iii). �

We now compute the indecomposable summands of M .

Proposition 3.3. Assume that char F �= 2. Let B be a block idempotent of FΣn. Then the FΣn-
module MB is 0 or indecomposable.

Proof. Assume that MB �= 0. Let A be the algebra EndFΣn(MB). Identify the algebra A in the
natural way with a direct summand of the algebra EndFΣn(M). We will use the notation and
results from Lemma 3.2 throughout this proof. Our goal is to show that A/J(A) has dimension 1
over F .

Suppose then that θ ∈ A. Let w be maximal such that the Specht module Mw/Mw−1 belongs
to B . Our task is to show that if θw = 0, then θu = 0 for all u such that Mu/Mu−1 belongs to B .
(The proposition follows easily from this. Let φ be in A. Then there is a scalar c such that the
map φw is c times the identity. Let θ = φ − c1A. Then θw = 0. Since θu is also 0 for all u with
Mu/Mu−1 belonging to B , it follows from the last part of Lemma 3.2 that θ ∈ J (A). Hence
A/J(A) has dimension 1.)

Now assume that θw = 0, and let u be an integer such that Mu/Mu−1 belongs to B . Let τ ∈ M

be as in Lemma 3.1, set τu := τ
∏m

i=u+1(z − zi), and set τw := τ
∏m

i=w+1(z − zi). The lemma
states that τu ∈ Mu \ Mu−1 and τw ∈ Mw \ Mw−1. Since u � w, we have

τuθ =
(

τw

w∏
i=u+1

(z − zi)

)
θ

= τwθ

w∏
i=u+1

(z − zi), as z is in the center of EndFΣn(M),

∈ Mw−1

w∏
i=u+1

(z − zi), as θw = 0 implies that τwθ ∈ Mw−1,

=
(

Mw−1

w−1∏
i=u+1

(z − zi)

)
(z − zw)

⊆ Mu(z − zw), using Lemma 2.1 repeatedly.

Now Mu/Mu−1 and Mw/Mw−1 both belong to B . So zu = zw , since both scalars are equal to the
image of z under the central character of B . Lemma 2.1 and the last inclusion displayed above
then show that τuθ ∈ Mu−1. But τu /∈ Mu−1, as proved in Lemma 3.1, and EndFΣn(Mu/Mu−1)

is one-dimensional, by 13.17 of [2]. We conclude that θu = 0, as required. �
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We have now done all the work to prove the main result of this paper.

Theorem 3.4. Assume that char F �= 2. Let b be a block idempotent of FΣn−1. Then the FΣn−1-
module (Sλ↓Sn−1

)b is 0 or indecomposable. Let B be a block idempotent of FΣn+1. Then the

FΣn+1-module (Sλ↑Sn+1)B is 0 or indecomposable.

Proof. We know that R and I satisfy properties 1 and 2 of M . That they also satisfy property 3
is a consequence of Theorem 2.7. The result now follows from Proposition 3.3. �
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